
Retinal Optical Coherence Tomography Image Denoising Using Modified Soft Thresholding 

Wavelet Transform 

Jahida Subhedar1 , Shabana Urooj2 , Anurag Mahajan1*

1 Department of Electronics and Telecommunication Engineering, Symbiosis Institute of Technology, Symbiosis International 

(Deemed University), SIU, Pune 412115, India 
2 Department of Electrical Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, P.O. Box 

84428, Riyadh 11671, Saudi Arabia 

Corresponding Author Email: anurag.mahajan@sitpune.edu.in

https://doi.org/10.18280/ts.400334 

 •

ABSTRACT 

Received: 7 October 2022 

Accepted: 28 April 2023 

Optical Coherence Tomography (OCT) represents a non-invasive imaging modality capable 

of capturing high-resolution cross-sectional images of anatomical structures by scanning the 

tissue of interest in a transverse manner. Nevertheless, the inherent speckle noise present in 

OCT images considerably degrades their textural and sharpness qualities. Conventional 

wavelet-based modified soft thresholding methods have been employed to preserve 

pertinent information in denoising OCT images, but their performance remains contingent 

upon hyperparameter tuning. In this study, we introduce a Particle Swarm Optimization 

(PSO)-based optimized Wavelet Threshold (WT) method for OCT image denoising. By 

automating the process of determining hyperparameter values dependent on image quality, 

PSO streamlines the denoising process. The optimization problem's fitness function is 

defined by the Peak Signal-to-Noise Ratio (PSNR) parameter. To evaluate the WT-PSO 

algorithm, we utilized performance metrics such as Mean Square Error (MSE), PSNR, 

Structural Similarity Index Metrics (SSIM), and Contrast-to-Noise Ratio (CNR) on a 

publicly available dataset comprising 17 retinal OCT images. The proposed denoising 

approach demonstrates comparable results to those obtained by manual iterative or trial 

methods, delivering marginal improvements in performance parameters and image quality. 

Moreover, our method outperforms traditional wavelet-based state-of-the-art techniques for 

denoising OCT images, highlighting its potential for widespread application in the field. 
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1. INTRODUCTION

Optical Coherence Tomography (OCT) imaging techniques, 

along with fundus imaging, play a vital role in diagnosing 

diseases in ophthalmology. OCT imaging is particularly useful 

for examining tissues of retinal layers and skin layers due to 

its penetrating capability. By utilizing a low coherence 

interferometer, OCT captures cross-sectional micro-level 

structural information about tissues, as illustrated in Figure 1. 

High-resolution images of internal micro-structures up to 1-2 

mm in depth can be obtained using this imaging technique [1]. 

However, OCT images are inherently affected by speckle 

noise, which arises from the interference of transmitted and 

echo signals with coherent signal sources. Speckles can either 

carry structural information or act as noise that degrades image 

quality [2, 3]. Speckle noise, being multiplicative in nature, 

imparts a granular appearance to images, reduces contrast and 

resolution, and ultimately limits their analytical value [4]. The 

increasing accessibility and affordability of medical imaging 

technology has led to the generation of vast amounts of image 

data, which can be employed for Computer-Assisted 

Diagnosis (CAD) systems. High-quality images are essential 

for enhancing the performance of these CAD systems. 

Traditional methods for reducing noise in OCT images 

include Mean, Median, Wiener, and Bilateral filtering [5]. 

However, these approaches often cause over-smoothing, 

resulting in the loss of structural information. To avoid over-

smoothing at image edges, the Total Variation Denoising 

(TVD) method was proposed [6].  

Figure 1. A typical retinal OCT image with 10 segmented 

layers [7] 

Although TVD preserves edges, it may lead to texture over-

smoothing and a staircase effect. Transform domain filtering 

methods, such as wavelet transform, curvelet-based [8], 
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contourlet-based [9], and Gaussianization transform [10], 

incorporating various shrinkage techniques, have proven more 

effective at preserving structural information. In studies by 

Zaki et al. [11] and Chen [12], noise-adaptive wavelet filtering 

for sub-bands was proposed by decomposing images into four 

sub-bands using wavelet transform. Each of the 

aforementioned methods offers its own advantages, and 

combining them can yield improved results. Techniques like 

the modified total variation method with wavelet algorithm, 

the total variation method with shearlet transform, and the 

Block matching 3D-based Total Variation [13] have been 

investigated to enhance speckle reduction, texture 

preservation, and edge preservation. However, the 

performance of these methods declines as noise levels increase. 

Deep learning methods have also been explored for noise 

reduction in OCT images while preserving structural 

information and texture [14, 15]. These methods necessitate a 

significant amount of labeled data, which is both time-

consuming and laborious to obtain. Acquiring databases with 

ground truth remains a challenge. CNN-based denoising 

models tend to have complex structures with numerous 

parameters that need to be tuned for optimal performance and 

to prevent over-fitting. 

Among the various wavelet despeckling approaches, like 

hard thresholding, soft thresholding and modified soft 

thresholding, modified soft thresholding functions have been 

demonstrated to yield the best results for speckle noise 

removal while retaining structural information [16-21]. The 

modified soft thresholding function relies on three tuning 

parameters: the degree of curvature (β), the degree of 

shrinkage of high-frequency coefficients (α), and the threshold 

value (K). These parameter values determine the level of 

artifacts in the reconstructed image, preservation of edge 

information, and the threshold for speckle filtering. 

Appropriate values for these hyperparameters must be set to 

achieve balanced performance. Traditionally, these values are 

determined manually by testing the algorithm with different 

sets of hyperparameters. Given that hyperparameter values 

yielding high-quality denoised images vary based on input 

noisy image characteristics (e.g., image quality, scaling, 

orientation, intensity distribution), an automated method for 

setting these values based on image quality is necessary. 

In this paper, we propose a Particle Swarm Optimization 

(PSO)-based wavelet filtering algorithm to automatically set 

hyperparameter values based on image quality and obtain 

high-quality denoised images. PSNR is employed as a fitness 

function for PSO. The PSO-based WT algorithm effectively 

denoises retinal OCT images, achieving results similar to those 

obtained using non-PSO methods. The algorithm improves 

PSNR values and the SSIM parameter, which measures the 

preservation of structural information in denoised images. The 

paper is structured as follows: Section 2 presents materials and 

methods, Section 3 discusses results, and Section 4 offers 

conclusions. 

 

 

2. MATERIALS AND METHODS 

 

The block diagram of the implemented PSO-WT (Particle 

Swarm Optimization based modified soft thresholding 

Wavelet Transform) method is shown in Figure 2. 

 

 
 

Figure 2. Block diagram of proposed PSO based modified 

soft thresholding for OCT image denoising 

 

The noisy retinal OCT image (z) is input to the log transform 

block which convert multiplicative speckle noise into additive 

noise. By using log transforming the image we can use near 

additive models which are simpler to work [10]. So, followed 

the similar approaches as in studies [8, 10, 17, 19]. The 2D 

discrete wavelet transform (DWT) is taken to obtain 

approximation (low-frequency sub-band) and detailed 

coefficient (high-frequency sub-band data) representation of 

the input image data (z) of size N×N. The size of each 

coefficient matrix is (N/2×N/2), i and j are used for coefficient 

matrix indexing. 

 

y = 2D_DWT(z) = (𝑦i.j
𝐿𝐿 , 𝑦i.j

𝐿𝐻 , 𝑦i.j
𝐻𝐿 , 𝑦i.j

𝐻𝐻) (1) 

 

The detailed wavelet coefficients are filtered using the 

modified threshold function given by Cao et al. [19]. It 

incorporates three hyper-parameters that decide the degree of 

curvature (β), degree of shrinkage of high frequency 

coefficient (α), and threshold value (K). The modified wavelet 

coefficients are obtained using Eqns. (2) and (3): 

 

ỹ𝑖,𝑗=1 {
𝑥𝑖,𝑗 +

2

𝜋
 𝑡𝑎𝑛−1( 𝛽

𝑥𝑖,𝑗

𝑇ℎ
+ 𝑠𝑔𝑛(𝑦𝑖.𝑗 ) 𝛼 )𝑦𝑡ℎ , |𝑦𝑖,𝑗| ≥ 𝑦𝑡ℎ

2

𝜋 
 𝑡𝑎𝑛−1(𝛼) 𝑦𝑖,𝑗  ,                  | 𝑦 𝑖, 𝑗 | < 𝑦𝑡ℎ

 (2) 

 

x(i,j) is calculated by adding or subtracting the threshold 

value from the wavelet coefficient depending on whether y is 

greater than or less than yth. The threshold value is calculated 

by: 

 

𝑦𝑡ℎ = 𝐾
𝑚𝑑𝑛(|𝐻𝐻1𝑜𝑐𝑡|)

0.6754

√2𝑙𝑛𝑀 

𝐿𝑑

 (3) 

 

where, d is the decomposition level of the wavelet transform, 

Ld depends on decomposition level. M is the length of the 

signal.  

The quality of denoised images depends on the values set 

for the three hyper parameters in Eqns. (2) and (3). We have 

used Particle Swarm Optimization (PSO) algorithm to 

optimize hyper-parameter values with PSNR as the fitness 

function. PSO mimics navigation logic followed by a flock of 

birds. It is used to find the optimum solution while maximizing 

or minimizing function value. Particles represent a bird’s 

population [22]. 
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𝑃𝑖 = {𝛼𝑖 , 𝛽𝑖 ,  𝐾𝑖} (4) 

 

Every particle starts with random values of hyper-

parameters in different directions. Particles move in the 

problem space following a set of rules. The image is 

reconstructed by inverse 2D DWT and inverse log transform 

for every particle and all the iterations. The fitness value i.e., 

PSNR of each particle solution is computed between input 

noisy image and reconstructed image. 

 

Fitness=PSNRpi (5) 

 

If the particles fitness (FitnessPi) value is greater than the 

particle best (Pbest) so far then, particle best value is modified. 

In case the particles fitness (FitnessPi) value is greater than the 

global fitness (Gbest) value, the global value is modified. Then, 

the velocity and position (value) of the particles are updated 

for the next round of iteration. 

For modified soft thresholding scheme each particle 

position (value) is comprises three parameters (α), (β) and k. 

Hence Eqns. (6) and (7) are used to modify the velocity and 

value of α for next iteration. 

 

𝑣_𝛼𝑖
𝑖𝑡𝑟+1 = 𝑤𝑣_𝛼𝑖

𝑖𝑡𝑟 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝛼𝑖
− 𝛼𝑖

𝑖𝑡𝑟)

+ 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡_𝛼𝑖 − 𝛼𝑖
𝑖𝑡𝑟) 

(6) 

 

𝛼𝑖
𝑖𝑡𝑟+1 = 𝛼𝑖

𝑖𝑡𝑟 + 𝑣_𝛼𝑖
𝑖𝑡𝑟1+1 (7) 

 

where, c1, c2 are acceleration coefficients, itr is the number of 

iterations the particles would undergo, and w is inertia weight. 

The r1 and r2 are random numbers used to set the initial values 

of tuning parameters and 𝑣_𝛼𝑖
𝑖𝑡𝑟+1  is the velocity for ith α 

particle in next iteration. 

The Eqns. (8) and (9) are used to modify the velocity and 

value of β: 

 

𝑣𝛽𝑖

𝑖𝑡𝑟+1 = 𝑤𝑣𝛽𝑖

𝑖𝑡𝑟 + 𝑐1𝑟1 (𝑃𝑏𝑒𝑠𝑡𝛽𝑖
− 𝛽𝑖

𝑖𝑡𝑟)

+ 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡_𝛽𝑖 − 𝛽𝑖
𝑖𝑡𝑟) 

(8) 

 

𝛽𝑖
𝑖𝑡𝑟+1 = 𝛽𝑖

𝑖𝑡𝑟 + 𝑣_𝛽𝑖
𝑖𝑡𝑟1+1 (9) 

 

and Eqns. (10) and (11) for modifying k for next iteration. 

 

𝑣_𝑘𝑖
𝑖𝑡𝑟+1 = 𝑤𝑣_𝑘𝑖

𝑖𝑡𝑟 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑘𝑖
− 𝑘𝑖

𝑖𝑡𝑟)

+ c2r2(Gbest_ki − ki
itr) 

(10) 

 

𝑘𝑖
𝑖𝑡𝑟+1 = 𝑘𝑖

𝑖𝑡𝑟 + 𝑣_𝑘𝑖
𝑖𝑡𝑟1+1 (11) 

 

The PSO algorithm is executed for several iterations. The 

final optimized solution for three hyper-parameter which 

maximizes the PSNR is obtained. The optimized values of 

hyper-parameters α, β, and k using PSO to give better 

performance may be different for different images, based on 

image quality, scaling, the orientation of image and intensity 

distribution, etc. Thus, the proposed system provides 

automation of hyperparameter tuning for modified soft 

thresholding wavelet denoising approach, irrespective of 

image the main steps of algorithm are stated in Algorithm. 

 

Algorithm: Modified soft threshold wavelet transform with 

PSO for OCT image denoising 

 

1: Read image 

2: Convert image into log domain 

3: Take 2D discrete wavelet transform 

4: Num of iterations, itr  

% initializations of algorithm parameters 

5: Num of particles n 

6: initialize array for n α particles with random values 

(Positions)  

7: initialize array for n β particles with random values 

(positions) 

8: initialize array for n k particles with random values 

(Positions) 

9: initialize array for Pbest for n particles 

10: initialize Gbest value 

11: initial velocities for α, β, and k 

12: assign values for learning factors c1, c2, weight w, r1 

and r2. 

13: for j=1 to itr do 

14: for i=1 to n do 

15: detailed wavelet coefficient matrix filtering using 

Eqns. (2) and (3) 

16: image reconstruction using inverse DWT. 

17: compute PSNR as a fitness function value for PSO. 

18: if fitness > Pbest then 

19: Pbest=fitness 

20: update particles best α, particles best β, and particles 

best  k to current iteration values α, β, and k. 

21: end if 

22: if fitness > Gbest then 

23: Gbest=fitness 

24: update global best α, β, and k to current iteration 

values α, β, and k. 

25: end if 

26: update value of α for next iteration using Eqns. (6) and 

(7)  

27: update value of β for next iteration using Eqns. (8) and 

(9) 

28: update value of k for next iteration using Eqns. (10) and 

(11) 

29: end for 

30: end for 

 

The performance of the proposed method for retinal OCT 

images is evaluated using parameters MSE, PSNR, SSIM, and 

CNR.  

MSE (Mean squre Error): This is a basic parameter used to 

compare the original noisy image(z) and denoised image (d), 

and N total number of pixels. 

 

MSE=
1

𝑁
∑ (𝑍𝑗 − 𝐷𝐽)2𝑁

𝑗=1  

 

PSNR (Peak signal to noise ratio): When SNR is expressed 

with reference to the maximum power of intensity within the 

image, it is referred to as PSNR.  

 

PSNR= 20 log10 
(𝟐𝐁−𝟏)

√𝐌𝐒𝐄
 

 

where, B is the number of bits per pixel and 2B − 1 is the 

maximum value of gray level. 
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Contrast to Noise Ratio (CNR): This is a patch/window-

based parameter. This gives a contrast relationship between 

background and image features. It specifies the ability to 

visualize the image features in a noisy environment: 

 

CNR =
1

F
∑

|μf − μb |

√| σf
2 − σb 

2 |

f=F

f=1

 

 

where, μb and σb 
2  are mean and the variance of background 

image, μf and σf
2  are mean and the variance of patches of 

foreground image. 

Structural similarity index (SSIM): SSIM gives the 

structural relationship between the original image and the 

denoised image. This parameter justifies the human visual 

system more closely than PSNR. SSIM compares the two 

images based on luminance, contrast, and structure parameters. 

 

SSIM =
(2uzud + b1)(2σzd + b2)

(uz
2 + ud

2 + b1)(σz
2 + σd

2 + b2)
 

 

where, μz, σz, are the mean, standard deviation of noisy input 

image, μd and σd are the mean, standard deviation of denoised 

image(d). σzd is cross-covariance for input noisy image(z) and 

denoised image(d). b1 and b2 are constants calculated from 

dynamic range of pixxel values. 

In implementation the SSIM function from MATLAB is 

used with all default parameters values except dynamic range 

and radius. Dynamic range is calculated from the denoised 

image, and the radius value is kept at 2. 

 

 

3. RESULTS AND DISCUSSION  

 

The data-set used for testing the algorithms was used in 

study [23]. The data-set consists of 17 retinal OCT images, of 

which ten images are of normal subjects, and seven are from 

AMD (age-related macular degeneration) subjects. The 

algorithm is implemented in MATLAB R2017a, the system 

with Intel Core i5-7200U CPU, 2.50 GHz, and 8 GB RAM.  

For wavelet transform, the wavelet family used is 

Daubechies (db2), and implemented decomposition level is 1. 

Cao et al. [19] implemented the modified soft thresholding 

algorithm for the skin OCT data-set, therefore, to compare the 

performance, we have implemented the modified soft 

thresholding [19] method with decomposition level 1 for 

retinal OCT images. 

The hyperparameter variations are set within limits [19] 

(alpha=0-0.5, beta 1 to 5, and k=1 to 1.5). To provide a large 

number of combinations of values of α, β, and k number of 

particles is set to 100, and by observations during the 

experimentations, the number of iterations is fixed to 15 when 

the PSNR value almost becomes stable. 

As performance of wavelet based denoising approach can 

be improved by changing the threshold selection method, hard 

thresholding to soft thresholding, reducing the effect of Gibbs 

phenomena [19]. Then as speckle can be noise or carrier of 

useful information, useful information can be preserved by 

modified soft thresholding method. Its effectiveness depends 

on combination of hyper parameter values α, β, and k. We have 

automated the process of setting these parameters which is 

independent of quality of noisy input images. 

The values of α, β, and k that perform better denoising differ 

for different images. Finding these values manually by the trial 

method is not the convenient way every time input image 

characteristics (like the quality of the image, Scaling, the 

orientation of the image, intensity distribution, etc.). are 

changed, so the proposed method suggests an automated 

method of setting values of hyperparameter of modified soft 

thresholding-based denoising algorithm. The automated 

method of setting hyperparameters gives comparable results 

that would be obtained by the manual trial method. It is 

observed from the Tables 1-4 the performance parameters 

MSE, PSNR, SSIM, and CNR are improved marginally. 

 

 

Table 1. Performance parameter: MSE 

 
Method \image 

database 

Donoho hard 

thresholding [24] 

Donoho soft 

thresholding [18] 

Modified soft 

thresholding [19] 

PSO based wavelet 

thresholding (proposed) 

Image 1 362.29 206.88 160.0179 158.206 

Image 2 316.11 184.36 142.9952 141.1112 

Image 3 325.42 190.56 147.8231 146.2622 

Image 4 293.73 170.01 133.6118 131.5868 

Image 5 240.81 138.39 106.5273 105.7769 

Image 6 296.11 178.18 139.3969 137.6856 

Image 7 284.77 169.12 130.619 128.8745 

Image 8 291.39 172.95 135.1155 133.8362 

Image 9 352.04 209.11 161.9777 160.493 

Image 10 354.88 201.70 156.8982 152.6841 

Image 11 348.35 197.78 155.3355 153.7897 

Image 12 347.00 194.22 152.2209 150.7548 

Image 13 364.31 202.27 157.2588 155.799 

Image 14 332.02 183.43 143.3578 140.825 

Image 15 340.89 187.06 145.6276 143.8037 

Image 16 334.00 186.87 144.7187 143.2287 

Image 17 312.82 183.47 141.0186 139.5642 

Mean MSE 323.35 185.67 144.3835 142.6048 

 

 

 

 

 

1182



 

Table 2. Performance parameter PSNR 

 
Method \image 

database 
Donoho hard 

thresholding [24] 
Donoho soft 

thresholding [18] 
Modified soft 

thresholding [19] 
PSO based wavelet 

thresholding (proposed) 
Image 1 22.54 24.97 26.0891 26.1386 
Image 2 23.13 25.47 26.5776 26.6352 
Image 3 23.00 25.33 26.4334 26.4795 
Image 4 23.45 25.83 26.8724 26.9387 
Image 5 24.31 26.72 27.8562 27.8869 
Image 6 23.42 25.62 26.6883 26.7419 
Image 7 23.59 25.85 26.9707 27.0291 
Image 8 23.49 25.75 26.8238 26.8651 
Image 9 22.66 24.93 26.0363 26.0762 

Image 10 22.63 25.08 26.1746 26.2929 
Image 11 22.71 25.17 26.2181 26.2615 
Image 12 22.73 25.25 26.3061 26.3481 
Image 13 22.52 25.07 26.1647 26.2052 
Image 14 22.92 25.50 26.5666 26.644 
Image 15 22.80 25.41 26.4984 26.5531 
Image 16 22.89 25.42 26.5256 26.5705 
Image 17 23.18 25.50 26.638 26.6831 

Mean PSNR 23.06 25.46 26.5552 26.6088 

 

Table 3. Performance parameter SSIM 

 
Method \image 

database 

Donoho hard 

thresholding [24] 

Donoho soft 

thresholding [18] 

Modified soft 

thresholding [19] 

PSO based wavelet 

thresholding (proposed) 

Image 1 0.50 0.59 0.6307 0.6394 

Image 2 0.51 0.61 0.6417 0.6505 

Image 3 0.51 0.60 0.6353 0.6436 

Image 4 0.52 0.61 0.6471 0.657 

Image 5 0.54 0.64 0.6832 0.6866 

Image 6 0.52 0.60 0.6406 0.6499 

Image 7 0.52 0.61 0.6462 0.6547 

Image 8 0.52 0.61 0.6479 0.6547 

Image 9 0.52 0.61 0.6491 0.6561 

Image 10 0.52 0.61 0.6527 0.6617 

Image 11 0.53 0.62 0.6615 0.6685 

Image 12 0.51 0.61 0.6502 0.6568 

Image 13 0.53 0.63 0.6662 0.6721 

Image 14 0.51 0.61 0.6466 0.657 

Image 15 0.51 0.61 0.6491 0.6576 

Image 16 0.51 0.61 0.6443 0.6528 

Image 17 0.51 0.60 0.6490 0.6505 

Mean SSIM 0.52 0.61 0.6490 0.6570 

 

Table 4. Performance parameter CNR 

 
Method \image 

database 

Donoho hard 

thresholding [24] 

Donoho soft 

thresholding [18] 

Modified soft 

thresholding [19] 

PSO based wavelet 

thresholding (proposed) 

Image 1 0.50 0.59 0.6307 0.6394 

Image 2 0.51 0.61 0.6417 0.6505 

Image 3 0.51 0.60 0.6353 0.6436 

Image 4 0.52 0.61 0.6471 0.657 

Image 5 0.54 0.64 0.6832 0.6866 

Image 6 0.52 0.60 0.6406 0.6499 

Image 7 0.52 0.61 0.6462 0.6547 

Image 8 0.52 0.61 0.6479 0.6547 

Image 9 0.52 0.61 0.6491 0.6561 

Image 10 0.52 0.61 0.6527 0.6617 

Image 11 0.53 0.62 0.6615 0.6685 

Image 12 0.51 0.61 0.6502 0.6568 

Image 13 0.53 0.63 0.6662 0.6721 

Image 14 0.51 0.61 0.6466 0.657 

Image 15 0.51 0.61 0.6491 0.6576 

Image 16 0.51 0.61 0.6443 0.6528 

Image 17 0.51 0.60 0.6490 0.6505 

Mean CNR 0.52 0.61 0.6490 0.6570 
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Table 5. Comparison of PSNR and SSIM [15] for MSBTD 

[25] (state of art method) and PSO

based wavelet thresholding (proposed) 

Method/Parameter MSBTD 
PSO based wavelet 

thresholding (proposed) 

Mean PSNR 26.46 26.61 

Mean SSIM 0.56 0.66 

In Table 5 gives comparison of for MSBTD [25] (state of 

art method) for OCT denoising which has used same dataset. 

Time taken for execution for hard thresholding is 19 sec, for 

soft thresholding 17 sec and for modified soft thresholding 18 

sec. Average time taken by MSBTD method for denoising one 

OCT B scan is around 9 minutes and for proposed method, it 

is around 179 sec. 

The OCT retinal image denoising is carried out for all 17 

images in the database. The processing of one of the images 

(Image 4 from the database) is shown in Figure 3 below. 

(a) Original image (b) Log image

(c) Wavelet decomposition  (d) Hard thresholding

(e) Soft thresholding (f) Modified soft thresholding

  reconstructed image  reconstructed image 

(g) Modified soft thresholding with PSO reconstructed image

Figure 3. OCT retinal image processing using wavelet 

transforms (Image 4 from database) 

4. CONCLUSIONS

The modified soft thresholding-based denoising algorithm 

preserves the finer details of images. Still, the performance 

depends on tuning parameters that affect artifacts, edge 

preservation in the reconstructed image, and filtering of 

speckles carrying information. It is observed that the use of 

PSO based tuning of parameters improves results marginally 

as compared to the same methods without PSO. The advantage 

here is that there is no need to manually find and set the hyper 

parameter values whenever quality of input image (due to 

Scaling, orientation of the image, intensity distribution, etc.) 

is changed. 

The proposed method is implemented for denoising any 

OCT images of different characteristics and getting optimum 

PSNR (fitness function for PSO) value. In Future work, if any 

specific parameter is to be improved that can considered as 

fitness function and its effectiveness on overall performance 

can be tested. Also, effectiveness of the proposed denoising 

algorithm can be tested by segmentation or classification tasks 

using denoised OCT images for disease detection. 
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