
Intelligent Home Scene Recognition Based on Image Processing and Internet of Things 

Zhongpeng Liu1* , Lijuan Liu2 , Lei An3

1 Academic Affairs Office, Baoding University, Baoding 071000, China  
2 College of Information Science and Technology, Hebei Agricultural University, Baoding 071000, China 
3 College of Artificial Intelligence, Baoding University, Baoding 071000, China 

Corresponding Author Email: liuzhongpeng@bdu.edu.cn

https://doi.org/10.18280/ts.400333 ABSTRACT 

Received: 15 February 2023 

Accepted: 10 May 2023 

Intelligent home systems interconnect various devices within the home using Internet of 

Things (IoT) technology. In order to achieve the objectives of remote control, automated 

management, and intelligent services, these systems require robust scene recognition 

capabilities. However, the accuracy and real-time performance of current image processing 

algorithms in complex environments and diverse scenarios remain to be improved. 

Additionally, the interoperability and security issues among intelligent home devices are 

challenging to address. Therefore, this study delves into the scene recognition technology of 

intelligent homes based on image processing and IoT. A GLN network is constructed to 

process multi-view images of intelligent home scenes, enabling the determination of sub-

region positions within the scenes. A model aggregation algorithm based on distributed 

learning is proposed, selecting intelligent home edge devices as the intelligent nodes of the 

IoT. By processing data and training models on these intelligent nodes, distributed 

intelligent home scene recognition is achieved. A dual-channel deep neural network-based 

intelligent home scene recognition model is constructed, and experimental results verify the 

effectiveness of the proposed model. 
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1. INTRODUCTION

With the rapid development of information technology, 

intelligent homes have gradually become an essential 

component of people's lives. Intelligent homes refer to the 

interconnection of various devices within the household via 

Internet of Things (IoT) technology, achieving remote control, 

automated management, and intelligent services, thereby 

enhancing the comfort, convenience, and security of home life 

[1-3]. To accomplish this goal, intelligent home systems 

necessitate robust scene recognition capabilities to 

automatically adjust the working status of devices based on the 

environment and user needs. Image processing technology, as 

an effective means of scene recognition, has received 

widespread research and application in recent years [4-7]. 

Image processing technology analyzes captured images, 

extracts useful information, and performs recognition, 

classification, and other processes to comprehend target 

scenes [8]. In the intelligent home domain, image processing 

technology can be applied to various scenarios, such as facial 

recognition, behavior analysis, and posture recognition [9-11]. 

As an emerging information technology, IoT connects various 

devices to networks, enabling real-time transmission and 

sharing of information, providing an essential foundation for 

intelligent home scene recognition [12-14]. 

In recent years, many researchers have dedicated 

themselves to applying image processing and IoT technology 

in intelligent home scene recognition. For instance, some 

studies have employed deep learning technology to develop 

image processing-based facial recognition systems, achieving 

automatic identification of family members and supporting 

personalized intelligent home services [15-17]. On the other 

hand, other researchers have analyzed family members' 

activity trajectories and behavior patterns, designing 

intelligent surveillance systems capable of recognizing 

abnormal behaviors to enhance home security [18]. Moreover, 

image processing technology can be applied to intelligent 

home energy management. For example, by monitoring and 

analyzing indoor lighting conditions in real-time, systems can 

automatically adjust curtains and lighting to achieve more 

efficient energy utilization [19]. Simultaneously, IoT 

technology advancements have facilitated collaborative work 

among intelligent home devices, such as air conditioning, 

lighting, and security systems, which can share information 

and work together to create a more intelligent home 

environment [20, 21]. 

Despite the achievements of image processing and IoT 

technology in intelligent home scene recognition, current 

research still presents challenges and issues. For example, the 

recognition accuracy and real-time performance of current 

image processing algorithms in complex environments and 

diverse scenarios need improvement [22]. Additionally, the 

interoperability and security of intelligent home devices are 

pressing problems to be resolved [23-26]. 

To address these challenges, this study conducts in-depth 

research into intelligent home scene recognition technology 

based on image processing and IoT. Firstly, in section 2, a 

GLN network is constructed to process multi-view images of 

intelligent home scenes, enabling the determination of sub-

region positions within these scenes. Secondly, in section 3, a 

model aggregation algorithm based on distributed learning is 

proposed, selecting intelligent home edge devices as the 
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intelligent nodes of the IoT. By processing data and training 

models on these intelligent nodes, distributed intelligent home 

scene recognition is achieved. Finally, in section 4, a dual-

channel deep neural network-based intelligent home scene 

recognition model is constructed, consisting of a sequence 

generation network, a global self-attention encoding network, 

a feature fusion network, and a classification network. 

Experimental results verify the effectiveness of the proposed 

model. 

 

 

2. INTELLIGENT HOME SCENE REGION 

LOCALIZATION 

 

Images of IoT-based intelligent home scenes from different 

perspectives at the same location contain rich background 

information about the position. To utilize this information, a 

coarse sub-region division of the intelligent home scene areas 

is performed in this study. Subsequently, a GLN network is 

constructed to process multi-view images of intelligent home 

scenes, achieving the determination of sub-region positions 

within these scenes. Figure 1 presents the network framework. 

The problem of determining sub-region positions in multi-

view intelligent home scenes is described as follows. It is 

assumed that the images of the front, back, left, and right 

directions of the sub-region position to be located are 

represented by z={z1,z2,z3,z4}, zZ. The set of all sub-region 

position images is denoted by Z. The predicted position of z is 

represented by tT, and the set of predicted positions of all J 

sub-regions to be located is represented by T={t1,t2,t3,t4}. 

Therefore, the goal of solving this problem is to learn the 

mapping function d: Z→T, realizing the mapping of the image 

z to the position target class t. 

 

 
 

Figure 1. Network framework 

 

Given a set of z={z1,z2,z3,z4}, z is used as the input to the 

model to extract high-dimensional features of intelligent home 

scene images, e=ρ(z)={e1,e2,e3,e4}. 

In the localization model, a message-passing module is 

established. It is assumed that the undirected edge between 

nodes cu and ck is represented by rij, and quadrilateral graph 

H=(C,R) is defined using C={c1,c2,c3,c4}and 

R={r12,r23,r34,r41}. The hidden states of node u at layers m and 

m+1 are represented by gm
uED and gm+1

uED, respectively. 

The set of neighboring nodes of node cu is denoted by B (u), 

the non-linear activation function is represented by δ, the 

normalization constant is represented by suk=(|B(u)B(k)|)1/2, the 

weight matrix of the feature transformation at layer m is 

denoted by Qm, and the update formula for the hidden state gu 

of node cu is given as follows: 
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It is assumed that the shared attention mechanism, s, is used 

for calculating the importance of features of node k for u. The 

weight update formula is as follows: 
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In the localization model, a position prediction module is 

established. The hidden state g undergoes M-layer information 

passing, eventually forming a single robust feature represented 

by ze, as follows: 

 

1 2 3 4, , ,e M M M Mz g g g g =    (3) 

 

Finally, ze serves as the input for the fully connected layer 

Ψ, and the probability distribution o'=d(Γ(Ψ(ze))) of all 

position target classes is output after processing by the Softmax 

function Γ( ). The real position label of position u is 

represented by ou, and the objective function is set according 

to the Softmax loss as follows: 

 

( )logu u

u

M o o= −  (4) 

 

 

3. SCENE RECOGNITION DISTRIBUTED LEARNING 

ALGORITHM 

 

In IoT-based intelligent homes, the main reason for low 

scene recognition efficiency is that cloud-based devices serve 

as the primary means of data processing and model training. 

This paper proposes a model aggregation algorithm based on 

distributed learning, which selects intelligent edge devices in 

the IoT network as intelligent nodes. By utilizing these 

intelligent nodes for data processing and model training, 

distributed intelligent home scene recognition is achieved. 

First, a global model is initialized on the intelligent home 

cloud server. The parameters of the global model are then 

broadcast to all edge devices participating in distributed 

learning. Each edge device trains the model locally using the 

data it has collected and updates the model weights. Once the 

training is completed, each edge device uploads its local model 

weights to the cloud server. Figure 2 presents the main 

functions of IoT devices in intelligent homes. 

Assuming that edge device models are assigned weights 

based on the number of edge devices, the weights are 

represented by {qb
y,n}B

b=1=1. Let the bias first moment 

estimate from the nth batch of the bth edge device at time y be 

lb
y,n, and the corresponding second moment estimate be cb

y,n. 

The bias-corrected first moment estimate is denoted by lb
y,n, 

and the corresponding second moment estimate is denoted by 

cb
y,n. The model weight gradient of the bth edge device in the 

nth batch at time y is represented by hb
y,n. Decay factors are 

denoted by α1 and α2, and their corresponding decay factors are 
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represented by αb
1,y,n and αb

2,y,n, respectively. The learning rate 

at time y is denoted by λy, and the constant to prevent zero 

denominators is represented by γ. The Adam algorithm 

expressions for updating local model weights are as follows:  
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There is no direct connection between the edge devices 

throughout the entire model training process. During IoT 

communication, all model weights {qb
y,N}B

b=1 are uploaded to 

the central IoT device. 

The cloud server collects the model weights uploaded by all 

edge devices. A model aggregation algorithm is applied to 

merge these weights into a single set of global model weights. 

As the core of the decentralized system, this paper employs 

model averaging as the aggregation algorithm to summarize 

and average all local model parameters. Let the global model 

weights at time y be represented by Qy, with the algorithm 

expression as follows: 
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Finally, the updated global model weights are broadcast to 

all edge devices. The edge devices update their local models 

based on the received global model weights. The updated 

models are then tested using local data to verify the 

recognition performance in actual scenarios. If the model 

performance is unsatisfactory, multiple training and updating 

rounds can be performed until the desired performance is 

achieved. 

 

 
 

Figure 2. Main functions of IoT devices in intelligent homes 

 

 

4. INTELLIGENT HOME SCENE RECOGNITION 

MODEL CONSTRUCTION 

 

This study constructs an intelligent home scene recognition 

model based on a dual-channel deep neural network, 

comprising a sequence generation network, a global self-

attention encoding network, a feature fusion network, and a 

classification network. The sequence generation network 

serves as the basis of the dual-channel structure and effectively 

extracts local features from the input image data. These local 

features aid in capturing the objects within the scene and their 

relationships, providing valuable information for the 

subsequent global self-attention encoding network. The global 

self-attention encoding network employs a self-attention 

mechanism to capture long-range dependencies within the 

image on a global scale. This encoding approach helps the 

model understand the relationships between different regions 

in the scene, further enhancing scene recognition accuracy. 

The feature fusion network is responsible for fusing the 

features generated by the two networks in the dual-channel 

structure. This design effectively leverages the strengths of 

both networks, combining local and global information to 

generate more expressive feature representations. The 

classification network is responsible for classifying the fused 

features and outputting the final scene recognition results. 

Figure 3 presents a schematic diagram of the model structure. 

This structure effectively combines local feature extraction 

and global attention mechanisms, allowing the model to better 

understand and recognize intelligent home scenes. 

Simultaneously, in the context of the Internet of Things, the 

model can process vast amounts of data from various devices, 

adapt to different scenarios, and provide a robust solution for 

intelligent home scene recognition. 

In the constructed intelligent home scene recognition model, 

the input for the sequence generation network is a 2D 

intelligent home scene image with a width and height of G and 

Q, respectively, and a channel number of V, represented by 

ZEG×Q×V. These images need to be transformed into 1D 

sequences, first dividing the image into O×O sub-blocks 

ZoEB×(o2·V), with the input sequence length represented by B. 

1173



 

To retain the positional information of the sub-blocks, the 2D 

matrix is fused with the position encoding RBM, generating 

2D matrices ZRG and ZDE. Using ZRG as an example, the 

corresponding expression for the above steps is given by the 

following equation: 

 
1 2; ; ;...; B

RG CL o o o POX Z Z R Z R Z R R = +   (11) 

 

In the global self-attention encoding network, the concepts 

of Query, Key, and Value for the attention mechanism are 

established. For B Query sequences, the attention output can 

be calculated using the following equation: 
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Figure 4 presents a schematic diagram of the global 

attention encoding module. If Query, Key, and Value are all 

obtained from a sequence JEB×F containing b vectors through 

linear transformation, the input sequence is processed using g 

self-attention mechanisms, ultimately dividing the sequence 

into g sequences of size B×f, satisfying F=gf. The final data is 

a feature matrix generated by concatenating the outputs of the 

g self-attention mechanisms, which constitutes the final output. 

Assuming there are L neurons in a given layer with input 

{xm
1,xm

2,...,xm
L}, the following equations apply: 
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In the feature fusion network, a learnable category vector is 

added to the generated sequence 2D matrix to help the model 

recognize different scene elements. Moreover, position 

encoding is introduced to facilitate the model's understanding 

of the relative positions of elements within the scene, resulting 

in XRG and XDE. Subsequently, XRG and XDE are fed into the 

global self-attention encoding network, which allows the 

model to capture long-range dependencies on a global scale, 

yielding updated XRG and XDE. The feature fusion network 

combines the two, generating matrix D. Before being input 

into the classification network, the true fused features must be 

extracted from D, which contains learnable category vector 

information, by taking the first data of each dimension in D to 

generate the fused feature D0. 

The classification network takes the fused feature D0 as 

input, with the structure consisting of a simple fully connected 

layer. 

 

 
Figure 3. Model structure schematic diagram 

 

 
 

Figure 4. Global attention encoding module schematic diagram 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Based on the experimental results from Figure 5, an analysis 

of the Top-n localization prediction accuracy for smart home 

scene recognition, founded on image processing and the 

Internet of Things (IoT), is offered. As observed in the figure, 

under Top-1 conditions, the probability of the model's highest 

scoring scene matching the actual scene is 0.78, thus indicating 

a 78% prediction accuracy. In a Top-2 scenario, the highest 

scoring two scenes predicted by the model reveal a probability 

of 0.91 for the accurate scene to appear, which translates to a 

91% prediction accuracy. Under Top-3 conditions, the three 

highest scoring scenes predicted by the model have a 0.93 

probability of the correct scene appearing, equating to a 93% 

prediction accuracy. Under Top-5 conditions, the five highest 

scoring scenes predicted by the model show a 0.96 probability 

of the correct scene appearing, corresponding to a 96% 

prediction accuracy. Finally, in a Top-10 scenario, the ten 

highest scoring scenes predicted by the model demonstrate a 

1.0 probability of the correct scene appearing, marking a 100% 

prediction accuracy. From the aforementioned data, it is 

evident that as the value of Top-n increases, the scene 

recognition prediction accuracy also increases 

correspondingly. When considering Top-10, the accuracy 

reaches 100%, but in practical application, a balance between 

accuracy and computational resources must be maintained. In 

most cases, the prediction accuracy of Top-3 or Top-5 is 

already quite high (93% and 96% respectively), enough to 

meet the demands of smart home scene recognition. Therefore, 

an appropriate Top-n value can be chosen based on the real-

world application scenario and resource constraints, to achieve 

a higher prediction accuracy. 

From Figure 6, the Cumulative Distribution Function (CDF) 

of the Top-1 scene localization error distribution for smart 

home scene recognition based on image processing and IoT 

can be analyzed. As illustrated in the figure, when the 

localization error is 1, the CDF is 0.941, which means there is 

a 94.1% probability that the prediction error will be less than 

or equal to 1. When the localization error is 2, the CDF is 0.972, 

which suggests a 97.2% probability that the prediction error 

will be less than or equal to 2. When the localization error is 3, 

the CDF is 0.978, signifying a 97.8% probability that the 

prediction error will be less than or equal to 3. When the 

localization error is 4, the CDF is 0.988, representing a 98.8% 

probability that the prediction error will be less than or equal 

to 4. When the localization error is 5, the CDF is 1, indicating 

a 100% probability that the prediction error will be less than 

or equal to 5. When the localization error is 6, the CDF is 0.999, 

denoting a 99.9% probability that the prediction error will be 

less than or equal to 6. From the aforementioned data, it is clear 

that the Top-1 scene localization error distribution of the smart 

home scene recognition, based on image processing and IoT, 

performs well. When the localization error is 1, there is already 

a 94.1% probability that the prediction error will be less than 

or equal to 1. As the localization error increases, the CDF 

value also increases correspondingly. When the localization 

error is 5, the prediction accuracy reaches 100%. This 

indicates that the model proposed in this study demonstrates 

high accuracy and stability in the task of intelligent home 

scene recognition. In practical applications, an appropriate 

localization error threshold can be selected according to the 

requirements and error tolerance. This indicates that the model 

proposed in this study demonstrates high accuracy and 

stability in the task of intelligent home scene recognition. In 

practical applications, an appropriate localization error 

threshold can be selected according to the requirements and 

error tolerance. 

 

 
 

Figure 5. Top-n localization prediction accuracy 

 

 
 

Figure 6. CDF Curve of Top-1 scene localization error 

distribution 

 

 
 

Figure 7. Detection results in various scene sub-area 

categories before and after introducing the localization model 
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Based on Figure 7, an analysis of the detection results in 

various scene sub-area categories for intelligent home scene 

recognition based on image processing and the Internet of 

Things can be conducted. The figure shows that the scene 

recognition accuracy in all sub-areas improves after 

introducing the localization model. The accuracy in sub-area 1 

increases from 92% to 93.8%, in sub-area 2 from 85.2% to 

87.8%, in sub-area 3 from 87.6% to 92.3%, in sub-area 4 from 

78.5% to 82.5%, in sub-area 5 from 91.6% to 94.2%, in sub-

area 6 from 77.5% to 79.8%, in sub-area 7 from 66.8% to 70%, 

in sub-area 8 from 66.9% to 71.8%, and in sub-area 9 from 

73.1% to 75.8%. It can be observed that the detection results 

in all scene sub-area categories improve after introducing the 

localization model, indicating that the localization model has 

a positive impact on overall scene recognition accuracy. 

Figure 8 presents the loss convergence curves under 

different numbers of global self-attention encoding network 

modules. The figure shows that without using global self-

attention encoding network modules, the loss value gradually 

decreases with the increase in the number of iterations, but 

remains slightly above 0.34 when the number of iterations 

approaches 100. With 5 global self-attention encoding 

network modules, the loss value also decreases with the 

increase in the number of iterations, eventually reaching 

slightly below 0.24. With 10 global self-attention encoding 

network modules, the loss value also decreases with the 

increase in the number of iterations, eventually reaching 

slightly below 0.14. It can be observed that using more global 

self-attention encoding network modules (10) achieves a lower 

loss value. This indicates that increasing the number of global 

self-attention encoding network modules helps improve model 

performance. 

Based on Table 1, the performance comparison of 

intelligent home scene recognition based on image processing 

and the Internet of Things under different detection models can 

be analyzed. The table shows that the FV-CNN model has a 

weight size of 321 MB, an mAP of 78.9%, and a processing 

speed of 22.2 frames/second. The MOP-CNN model has a 

weight size of 111 MB, an mAP of 79.8%, and a processing 

speed of 41.1 frames/second. The MFAFVNet model has a 

weight size of 109 MB, an mAP of 74.5%, and a processing 

speed of 61.2 frames/second. The proposed model has a 

weight size of 67 MB, an mAP of 82.3%, and a processing 

speed of 71.4 frames/second. It can be observed that the 

proposed model outperforms the other models in terms of 

weight size, mAP, and processing speed. Compared to other 

models, the proposed model has a smaller weight size, higher 

scene recognition accuracy, and faster processing speed. This 

demonstrates that the proposed model exhibits better 

performance in the task of intelligent home scene recognition. 

In practical applications, the proposed model can be 

considered to improve the performance of intelligent home 

scene recognition. 

 

Table 1. Performance comparison of different detection 

models 

 

Method Weight Size (MB) mAP(%) Speed/(frame∙s-1) 

FV-CNN 321 78.9 22.2 

MOP-CNN 111 79.8 41.1 

MFAFVNet 109 74.5 61.2 

Our model 67 82.3 71.4 

 

 

Based on Figure 9, an analysis of the performance of 

intelligent home scene recognition using image processing and 

the Internet of Things under different detection models can be 

conducted. As shown in the figure, for the FV-CNN model, the 

performance gradually improves with the increase in the 

number of iterations, but it stabilizes after 40 iterations, 

reaching a maximum of 98.4%. For the MOP-CNN model, the 

performance also gradually improves with the increase in the 

number of iterations, but it stabilizes after 40 iterations, 

reaching a maximum of 99.2%. For the MFAFVNet model, the 

performance gradually improves with the increase in the 

number of iterations, but it stabilizes after 40 iterations, 

reaching a maximum of 99.0%. For the proposed model, the 

performance gradually improves with the increase in the 

number of iterations, but it stabilizes after 40 iterations, 

reaching a maximum of 99.4%. From the aforementioned data, 

it can be observed that the proposed model outperforms the 

other models in terms of performance. With the increase in the 

number of iterations, the performance of the proposed model 

gradually improves, eventually reaching 99.4%, which is 

higher than the other three models. This demonstrates that the 

proposed model exhibits better performance in the task of 

intelligent home scene recognition. 

 

 
 

Figure 8. Loss convergence curves under different numbers 

of global self-attention encoding network modules 

 

 
 

Figure 9. Performance curves of different models 
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6. CONCLUSION 

 

In this study, the techniques of intelligent home scene 

recognition based on image processing and the Internet of 

Things were thoroughly investigated. Firstly, a GLN network 

was constructed to process multi-view images of intelligent 

home scenes, achieving the determination of sub-area 

locations in intelligent home scenes. Secondly, a model 

aggregation algorithm based on distributed learning was 

proposed, selecting intelligent home edge devices as 

intelligent nodes of the Internet of Things. By processing data 

and training models on these intelligent nodes, distributed 

intelligent home scene recognition was achieved. Lastly, a 

dual-channel deep neural network model for intelligent home 

scene recognition was developed. Through comprehensive 

experimental analysis, the following conclusions can be drawn: 

(1) In the task of intelligent home scene recognition based 

on image processing and the Internet of Things, the proposed 

model outperforms the comparison models (FV-CNN, MOP-

CNN, and MFAFVNet) in terms of weight size, mAP, 

processing speed, and performance curves. This demonstrates 

that the proposed model exhibits better performance in the 

scene recognition task and is suitable for practical applications. 

(2) When analyzing the impact of the number of global self-

attention encoding network modules on the loss convergence 

curves, it was found that using more global self-attention 

encoding network modules (10) achieves a lower loss value. 

This indicates that increasing the number of global self-

attention encoding network modules helps improve model 

performance. However, in practical applications, the 

relationship between model complexity and performance 

should be balanced, and an appropriate number of global self-

attention encoding network modules should be chosen. 

(3) When analyzing the performance curves of different 

models, it was observed that the performance of each model 

improves gradually with the increase in the number of 

iterations. When the number of iterations reaches around 40, 

the model performance tends to stabilize. Therefore, when 

training the model, it can be considered to stop training at this 

point to save computing resources. 

In summary, the proposed model demonstrates good 

performance in the task of intelligent home scene recognition 

and is worth considering for practical applications. Moreover, 

to improve model performance, optimization methods such as 

adjusting the number of global self-attention encoding 

network modules and optimizing the number of iterations can 

be employed. 
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