
Deep Learning-Based Dermoscopic Image Classification System for Robust Skin Lesion 

Analysis 

Rajamanickam Thamizhamuthu1* , Subramanian Pitchiah Maniraj2

1 Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 

603203, Tamil Nadu, India 
2 Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 

600089, Tamil Nadu, India 

Corresponding Author Email: thamizhr@srmist.edu.in

https://doi.org/10.18280/ts.400330 ABSTRACT 

Received: 26 December 2022 

Accepted: 18 March 2023 

This paper introduces a sophisticated dermoscopic image classification system (DICS) 

leveraging deep learning techniques for accurate skin lesion classification. The DICS 

comprises four distinct modules: i) Skin Lesion Segmentation (SLS), ii) Feature Extraction 

(FE), iii) Feature Selection (FS), and iv) Image Classification (IC). The SLS module 

preprocesses the input dermoscopic image and employs a color k-means clustering approach 

for segmentation. Subsequently, in the FE module, three types of features are extracted, 

including 4th order Color Moments (CM), a statistical model based on Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH), and texture features derived from 

Local Binary Patterns (LBP). The predominant features are then selected in the FS module 

using a statistical t-test. Finally, the IC module classifies dermoscopic images as normal or 

melanoma using a deep learning approach. The DICS demonstrates promising results, 

achieving 99% and 100% accuracy in normal/abnormal and benign/malignant 

classifications, respectively, when tested on the PH2 database. This robust classification 

system has the potential to contribute significantly to the field of dermatological image 

analysis. 
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1. INTRODUCTION

Skin cancer, characterized by the uncontrolled growth of 

skin cells, is a growing global concern marked by increasing 

incidence and mortality rates. In 2018, the United States 

reported an estimated 91,270 new melanoma cases and 9,320 

deaths [1]. Worldwide, over 232,000 new melanoma cases and 

approximately 55,000 deaths were estimated in 2012, with 

men exhibiting a higher mortality rate than women. Early 

diagnosis and treatment of melanoma are crucial, as it can 

spread rapidly throughout the body. Consequently, numerous 

Computer-Aided Diagnosis (CAD) systems have been 

developed in recent years to screen and detect cancers. 

A non-invasive method for skin lesion classification with 

real-time alerts for skin burns is presented in the study [2], 

utilizing texture, color, and shape features for early lesion 

classification via a Support Vector Machine (SVM) classifier. 

In the study [3], a Multi-Layer Perceptron (MLP) network is 

trained on color and edge characteristics of lesions for 

dermoscopic image classification systems (DICS), employing 

the backpropagation algorithm for effective lesion 

classification. 

Melanoma diagnosis using wavelet-based features is 

explored in the study [4], where wavelet-based features are 

integrated with geometrical and border-based features. Four 

classifiers, including SVM, random forest, naive Bayes, and 

logistic tree model, are employed. In the study [5], a fixed grid 

wavelet network is utilized for melanoma diagnosis, with the 

relief algorithm selecting ten features from color, shape, and 

texture for adequate classification. 

An approach for skin lesion segmentation and classification 

using a convolutional neural network is discussed in the study 

[6]. A fully convolutional residual network is employed for 

segmentation, while a deep residual network is used for 

classification, avoiding degradation problems through residual 

learning. In the study [7], a symbolic regression algorithm-

based skin lesion classification is described, using clinically 

significant colors to compute malignancy scores and applying 

a k-means clustering approach to reduce the number of colors 

in dermoscopic images. 

A melanoma classification method based on pigment 

network features, along with color, texture, and shape features, 

is presented in the study [8]. Ordinal regression and logistic 

regression learning algorithms are employed for classification. 

In the study [9], a neural network ensemble model for 

dermoscopic image classification is described. Initially, a self-

generating neural network segments the skin lesion, followed 

by the extraction of color, shape, and texture feature 

descriptors. A network ensemble model combining 

backpropagation and fuzzy-based networks is used for 

classification. 

A decision support system for melanoma diagnosis is 

discussed in the study [10], which investigates pigmented skin 

lesions. Following segmentation, texture, color, asymmetry, 

and border features are extracted, and a Bayesian network is 

used for classification. The final decision incorporates patient-

related data such as age, gender, skin type, and body part. In 

the study [11], multispectral image analysis for melanoma 
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classification is explored, using the mean energy of 

Daubechies-3 wavelet decomposed images as features and 

fuzzy membership functions for classification. 

The primary objective of this study is to determine skin 

lesion abnormality severity with maximum accuracy. Previous 

studies have predominantly utilized color, shape, and texture 

features of skin lesions. Advanced modeling techniques can be 

applied to skin lesions, allowing model parameters to serve as 

features and enabling dimensionality reduction. The recent 

introduction of the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model in various signal 

processing applications has yielded improved performance. 

Consequently, this study analyzes the parameters of the 

GARCH model and standard features, such as color and 

texture, for DICS. Dominant features are selected using a 

statistical test and applied to deep learning for determining 

skin lesion abnormality. This paper presents an efficient CAD 

system for skin cancer diagnosis using dermoscopic images. 

Section 2 details the methods and materials employed by DICS, 

followed by a discussion of the experimental results in Section 

3. The conclusion of this study is presented in the final section. 

 

 

2. METHODS AND MATERIALS 

 

The DICS consists of the following modules: SLS, FE, FS, 

and IC modules. The following subsections explain these 

modules clearly and in detail. The idea of robust DICS is 

illustrated in Figure 1. 

 

 
 

Figure 1. Flow of DICS for the diagnosis of skin cancer 

 

2.1 SLS module 

 

This is the first module of DICS where the exact skin cancer 

region is segmented using a k-means clustering approach on 

RGB (Red, Green, and Blue) colour images. K-means 

clustering is primarily a color-based segmentation approach 

that uses the colour values of the pixels in the image to cluster 

them into different groups. This means that pixels with similar 

color values are grouped, which can help to isolate the skin 

cancer region from the rest of the image. It does not require 

prior knowledge or training data to segment the image, i.e., an 

unsupervised learning approach. The algorithm involves the 

initialization of the cluster centers and continues to iterate until 

a convergence criterion is met. The output of the k-means 

clustering algorithm is a set of clusters, where each cluster 

corresponds to a different color region in the image. 

Before segmentation, the image is smoothed by an 

averaging filter in the colour domain with a predefined 

window size which will remove noise and hair in the 

dermoscopic images. A larger sliding window of size 21×21 

reduces the intensity variation between pixels, so noises and 

hairs will be removed completely. Let us consider a 

dermoscopic image DI. The pixel value of DI is represented 

by DIij, for i, j=1, ..., n, where n is the size of the image. The 

output Oij from the linear filter of size (2m+1)×(2m+1) is 

denoted by. 
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where, wxy for x, y=-m, ..., m is the weight of the filter. In this 

study, a linear filter (average filter) of size 21×21 (m=10) is 

used to smooth the image; hence, the weight is assigned 

equally to 1/21 for wxy. The application of this filter to DI 

replaces each pixel with the average of pixels values in a 

21×21 window centered on that pixel. For simplicity, let us 

consider a 3×3 filter. The averaging is carried out over this 

window size is defined by: 
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Figure 2 shows the preprocessed dermoscopic images. 

 

   
 (a)  

   
 (b)  

 

Figure 2. (a) Input dermoscopic images (Top Row images) 

(b) Smoothed images (Bottom row) 

 

The RGB colour image is converted into L*a*b* colour 

space to quantify the visual differences. Figure 3 shows the 

filtered image's L,*a, and *b components. The conversion 

formula is as follows: 
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represent the lightness of the colour, red minus green and 

green minus blue. Also, X, Y, and Z correspond to R, G, and B 

channels, Xw, Yw, and Zw are reference white tri-stimulus values. 

This conversion enables obtaining all colour information in 

only two channels; a* and b*. Hence, k-means clustering is 

easily applied to cluster the colour information. It partitions 

the given data into k clusters. As the dermoscopic images 

contain skin lesions (abnormal region), unaffected skin region 

(normal skin area), and some background information (parts 

other than skin), the k value is set to 3. The steps to compute 

k-means clustering (k=3) for skin lesion segmentation are 

given below: 

1. Randomly choose three initial clusters

),( )1(
3

)1(
2

)1(
1 mandmm . The superscript identifies the initial 

cluster number. 

2. The k-means clustering proceeds with assignment and 

update steps. These steps are iterated until it converges in the 

update step when the assignment no longer changes. 

(a) Assignment step: In this step, each observation (zp) is 

assigned to one of the clusters (C), which has the least squared 

Euclidean distance. Thus, each observation (zp) is assigned to 

exactly one cluster (𝐶(𝑡)). It is defined by: 
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(b) Update step: This step updates the means of the 

observations (z) in the new clusters ( )(t
iC ). 
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Figure 3. RGB to L*a*b Conversion (a) RGB image (b) L 

channel (c) *a channel (d) *b channel (e) segmented lesion 

 

The k-means clustering algorithm is widely applied in many 

medical image processing applications using gray-scale 

images. More information about the k-means clustering 

algorithm can be obtained from [12]. This study is applied to 

colour images with the help of colour information in a* and b* 

channels. Figure 3 (d) shows the segmented lesion. 

The colour information in a* and b* channels are combined 

and fed to the k-means clustering to segment the lesion 

effectively. The obtained cluster (segmented area) from the k-

means approach is superimposed with the preprocessed image 

to get the original skin lesion, shown in Figure 3(d). 

 

2.2 FE module 

 

Three different types of features, such as CM of up to 4th 

order, GARCH, and texture features by LBP, are discussed in 

the following sub-sections. 

 

2.2.1 Colour moments 

As the colour of the skin lesion plays an essential role in 

dermoscopic image classification, CMs are an excellent 

feature to use. They are computed from the RGB colour model, 

which characterizes the colour distribution in the skin lesion 

regions. Table 1 shows the CMs used in DICS. The total 

number of colour features extracted in this phase is 12. 

 

Table 1. Colour moments 
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where, I is the segmented image, and H and W are the height and 

width. 

 

2.2.2 GARCH features 

The GARCH model was developed by Bollerslev [13]. As 

the name implies, GARCH includes a feedback mechanism to 

predict future variances using past variances. The robustness 

of a GARCH model depends on several factors, including the 

quality and quantity of data used to estimate the model 

parameters and the choice of model specification. It requires 

sufficient high-quality data to accurately estimate the model 

parameters. The proposed system uses high-quality 

dermoscopic images from the PH2 database. It is also essential 

to carefully consider the assumptions and limitations of model 

specification and the best fits the data are chosen. The GARCH 

model has been applied to speech processing [14, 15], image 

de-noising [16], and signal classification [17]. If the intensity 

information in each colour channel is modeled with GARCH, 

then the parameters of GARCH can be used as features. The 

GARCH (p,q) process is defined by: 
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where, σt is the conditional standard deviation and zt is a 

random variable drawn from a Gaussian distribution with zero 

mean and unit variance. Also, σt is a process such that: 
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In this study, the parameters of the GARCH model with 

units p(1) and q(1) are used. That is, GARCH(1,1): 
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The constant parameter in Eq. (10) such as α0, α1and β1 can 

be obtained using maximum likelihood estimation [17]. These 

parameters, along with the conditional mean constant, are 

considered features. To fit the GARCH model, the condition 

means are assumed to be constant for simplicity as GARCH 

processes are independent of conditional mean on the past, and 

it depends only on the conditional variance on the past. The 

total number of GARCH features extracted in this phase is 12. 

 

2.2.3 LBP features 

LBP is an efficient local descriptor in many pattern 

recognition approaches [18, 19]. It is invariant against any 

intensity changes due to illumination variances. It uses simple 

thresholding of neighboring pixels inside a 3x3 window with 

a threshold value equal to the intensity of the centre pixel. LBP 

features are computed by using the following Eq. (11): 
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where, (Xc, Yc) is the centre pixel of a 3x3 window, S is the 

threshold function ic and in represents the value of the central 

pixel and the value of nth neighborhood pixels, respectively. 

The threshold function S is defined by: 
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Figure 4. LBP Process 

 

The application of Eq. (11) the whole image produces LBP 

with 256 different patterns. All these patterns are extracted for 

each colour channel without considering the border. The total 

number of LBP features extracted in this phase is 768. Figure 

4 shows the working process of LBP. The value inside the 

parenthesis is obtained by Eq. (12). 

 

2.3 FS module 

 

The DICS extracts the features such as CM of up to 4th order, 

parameters of the GARCH model, and texture features by LBP 

to classify skin lesions. The feature dimension is 792 per 

dermoscopic image. The extracted features by the above steps 

from 2.2.1 to 2.2.3 may contain redundant information, which 

may degrade the system's performance. To overcome this, the 

FS module is introduced in the DICS. A commonly used 

hypothesis test, the t-test, is used to decide whether the 

extracted features are significantly different from each other 

or not. The features are ranked by class separability criteria to 

identify the dominant feature set. 

Let us consider, N={Nk1, Nk2, ..., Nkf 1≤k≤n1} be the 

extracted features from n1 several normal training samples and 

A={Ak1, Ak2, ..., Akf 1≤k≤n2} the extracted features from n2 

several abnormal training samples. Each normal and abnormal 

case consists of f number of features. Let the means of each 

feature in groups N and A are defined by: 
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The t-test statistic value is given by: 
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It is observed from Eq. (15), that the t-test provides f number 

of t values. The feature with a high t-value indicates that the 

two classes (normal and abnormal) are significantly different. 

In this stage, only the dominant elements are selected by t-test, 

and the classification is done in the next step by the selected 

features as Dominant Features (DF) in a predefined percentage 

(1%, 2%, and 3%) of total feature dimension. 

 

2.4 IC module 

 

This module employs a deep learning approach for 

dermoscopic image classification. Deep learning adds more 

hidden layers between input and output layers to nonlinear 

model relationships, whereas traditional neural networks 

normally have one hidden layer [20]. A simple deep-learning 

architecture with two hidden layers is shown in Figure 5. 

Let us consider X=[x1, x2, ..., xm] be the input feature vector 

with m features that forms the input layer of the neural network. 

The ith neuron in the jth hidden layer is denoted by, and the 
j

ih
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corresponding weight is denoted by mkw ji
k 1, . The 

output of the first hidden neuron in the first hidden layer, i.e., 
1
1h is obtained by the dot product of features in the input 

feature vector X with their corresponding weight. It is defined

by: 
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The obtained dot product of 1
1h is fed into an activation 

function )(1
1 zfh =  to get the neuron's output. This procedure 

is repeated for all neurons in each hidden layer. As the step 

function has no useful derivatives, the tansig function is used 

in this study as an activation function and works better for 

backpropagation. The backpropagation is a descent algorithm 

that minimizes the error at each iteration when the error signal 

is backpropagated to the lower layer. The weights in this 

network are adjusted, so that error rate reduction usually 

occurs in a decent direction. 

Figure 5. Neural network architecture with two hidden layers 

Figure 6. Tan-Sigmoid function in the classifier input layer 

The training is usually done based on the error signal with 

an iterative updating of the weights, which uses the mean-

squared error function of the negative gradients. The error 

signal is the difference between the actual and the desired 

output values multiplied in the input layer by the sigmoid 

activation function ( ) )1(
21

2 −==
−+ ae

ntansiga . 

The tansig function is a popular activation function mainly 

used in the hidden layers. It has several desirable properties. 

First, it is a smooth, continuous function that can be easily 

differentiated and used in gradient-based optimization 

algorithms. Second, a nonlinear function allows neural 

networks to model complex relationships between inputs and 

outputs. The choice of activation function, including the tansig 

function, depends on the nature of the data and the task at hand. 

The tansig function is a hyperbolic tangent function that maps 

its input to a range between -1 and 1. It accelerates the 

convergence of the backpropagation method and is well-suited 

for modeling nonlinear relationships between inputs of normal 

and abnormal dermoscopic images. Figure 6 shows the tansig 

function in the classifier input layer. 

The classifier output is obtained from the results of jth the 

hidden layer. Since the classifier is trained to produce only one 

output, either normal or abnormal, the weight w0 consists of n 

weights with o
n

oo www ,....., 21 . It is defined by: 
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The obtained dot product is fed into an activation function 

)(ˆ zfy =  to get the final classifier output. The function used 

in the output layer is the linear function (a=purelin(n)) which 

is shown in Figure 7. While training the classifier, the 

abnormal inputs are given with class labels as '1' and normal 

with class labels '0'. Thus, for a testing sample, if the classifier 

output is greater than 0, the testing sample is classified as 

abnormal else it is classified as normal. 

Figure 7. Linear function in the classifier output layer 

After the FS module, the deep learning network is trained 

using the selected features with ten hidden layer structures and 

validated using a ten-fold cross-validation technique. 

3. RESULTS AND DISCUSSIONS

The DICS designed in section 2 is analyzed using the PH2 

database [21, 22]. It contains 200 dermoscopiccolour images 

with melanocytic lesions. The resolution of these images is 

768x560 pixels. There are 80 normal and 120 abnormal 

images available for classification. The classification scenario 

is a two-level deep learning approach. In the 1st level deep 

learning approach, the task is to classify the image as normal 

or abnormal. Then in the 2nd level deep learning approach, the 

abnormal severity is classified again into benign/malignant. 

Once the features are extracted, they are analyzed for the 

classification of dermoscopic images individually. Then, the 

FS module is introduced to select DFs from the fused feature 

set. The k-fold cross-validation is employed, and the 

performance of DICS is computed using different features; 

CM, GARCH, LBP, DF (1%), DF (2%), and DF (3%). The 

definitions of various performance metrics used in DICS are 

shown in Table 2, 

Table 2 defines T+ and T- as the number of correct 

classifications of abnormal and normal skin images, 

respectively. Similarly, F- and F+ are defined as the number 

of incorrect classifications of abnormal and normal skin 

images, respectively. Apart from these performance metrics, a 
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graphical plot called Receiver Operating Characteristics (ROC) 

is drawn between Sen and 1-Spe. It shows the diagnostics 

ability of DICS by the area below the curve. Tables 3 and 4 

show the performances of 1st- and 2nd-level deep learning 

approaches for the classification of skin cancer, respectively. 

It is observed from Tables 3 and 4 that the number of correct 

classifications (T+ and T-) is more than others, which means 

that the DF (2%) has more promising results than other 

features used in DICS for skin cancer classification. The DICS 

achieves 98.33% and 100% sensitivity for 1st and 2nd stage 

deep learning approaches while using DF (2%) features. Also, 

it is noted that 100% specificity is achieved at both 

classification stages. Among the three features (CM, LBP, and 

GARCH), GARCH has the highest accuracy of 87% (1st stage) 

and 90% (2nd stage) than others. Figure 8 shows the ROCs of 

1st and 2nd stage deep learning approaches. 

 

Table 2. Performance matrices of DICS 

 
Performance measure Description Formula 

Sensitivity (Sen) It refers to the ability of the DICS to detect abnormal cases correctly. 
)()( −++

+
=

FT

T
Sen  

Specificity (Spe) It refers to the ability of DICS to detect normal cases correctly. 
)()( ++−

−
=

FT

T
Spe  

Accuracy (Acc) It refers to the overall accuracy of DICS. 
)()()()(

)()(

++−+−++

−++
=

FTFT

TT
Acc  

+T →True Positive, −F →False Negative, −T →True Negative and +F →False Positive 

 

Table 3. Performance of 1st level deep learning approach 

 

Metrics 
Features 

CM LBP GARCH DF (1%) DF (2%) DF (3%) 

T+ 90 97 102 110 118 108 

F- 30 23 18 10 2 12 

T- 65 70 72 79 80 77 

F+ 15 10 8 1 0 3 

Sen (%) 75.00 80.83 85.00 91.67 98.33 90.00 

Spe (%) 81.25 87.50 90.00 98.75 100.00 96.25 

Acc (%) 77.50 83.50 87.00 94.50 99.00 92.50 

 

Table 4. Performance of 2nd level deep learning approach 

 

Metrics 
Features 

CM LBP GARCH DF (1%) DF (2%) DF (3%) 

T+ 34 35 36 37 40 36 

F- 6 5 4 3 0 4 

T- 63 69 72 75 80 74 

F+ 17 11 8 5 0 6 

Sen (%) 85.00 87.50 90.00 92.50 100.00 90.00 

Spe (%) 78.75 86.25 90.00 93.75 100.00 92.50 

Acc (%) 80.83 86.67 90.00 93.33 100.00 91.67 

 

 
 

Figure 8. ROC of 1st (top plot) and 2nd stage (bottom plot) deep learning approaches 
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Table 5. Comparative study of DICS with existing systems 

 
Author Database #Images used Acc (%) Sen (%) Spe (%) 

Abuzaghleh et al. [2] PH2 200 - 97.5 96 

Xie et al. [9] Caucasian race dataset includes PH2  360 91.1 83.3 95 

Nasir et al. [23] PH2 200 97.5 97.7 96.7 

Proposed system PH2 200 99.5 99.2 100 

Yu et al. [6] ISBI 379 85.5 54.7 93.1 

Proposed system ISBI 379 89.7 65.3 95.7 

 

It is observed from the ROCs in Figure 8 that DF (2%) 

occupies more area under the curve due to the number of 

correct classifications of normal and abnormal images in the 

1st stage (99%) and 2nd stage (100%) classification. Also, CM 

provides the least performance (77.50% and 80.83%) than 

others. 

Table 5 gives a comparative study of DICS with other 

approaches using different dermoscopic databases. For DICS, 

performance measures such as Acc, Sen, and Spe are the 

average performances of 1st-level and 2nd-level deep learning 

approaches. The number of normal and abnormal images in 

the International Symposium on Biomedical Imaging (ISBI) 

testing dataset is [24] imbalanced, i.e., the number of abnormal 

images (75) is fewer than the normal images (304). This 

imbalance causes the sensitivity to become relatively small 

and the specificity to become relatively large. As the DICS 

performs better on the PH2 database using DF (2%) features, 

the same set of features is used to analyze other databases. 

Results show that DICS provides a better result than existing 

approaches in the literature. 

 

 

4. CONCLUSIONS 

 

An efficient CAD system is developed for skin cancer 

diagnosis with high accuracy using a deep learning approach. 

The salient feature of DICS is the modeling of skin lesions 

using the GARCH model. Instead of extracting features from 

the images, the GARCH model parameters are used as features 

with colour and LBP features. These features are extracted 

from the segmented skin lesion by the k-means clustering 

approach. Simple median filtering is used for removing hairs 

and noises initially. Before classification, a feature selection 

approach is employed to select DFs. The performance of DICS 

is analyzed using PH2 and ISBI database dermoscopic images. 

Results show that the two-level deep learning approach on the 

PH2 database provides better accuracy of 99% for 1st and 

100% for the 2nd levels of classification. It is also observed 

that GARCH features play the dominant role and contributes 

more than the CM and LBP features. 
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