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The pervasive usage of Wireless Sensor Networks (WSNs) across various sectors - including 

environmental monitoring, intelligent transportation, healthcare, and security surveillance - 

necessitates efficient mechanisms for real-time image transmission. The ability to deliver 

timely and accurate visual information is essential for effective decision-making in these 

applications. Current techniques for real-time image transmission and compression in 

WSNs, unfortunately, fail to adequately consider the energy limitations of sensor nodes, 

often leading to premature energy exhaustion and consequently destabilizing the network's 

overall reliability. This study presents an investigation into an innovative joint encoding 

strategy for real-time image transmission and compression in WSNs, proposed to address 

these limitations. When compared with decoding schemes individually optimized for each 

user's channel conditions, it is demonstrated that the proposed method achieves a 

comparable quality of image reconstruction. Furthermore, this study introduces a post-

processing network model, designed to mitigate compression artifacts, facilitating superior 

image reconstruction quality even at high compression ratios and low bit rates. Experimental 

results underscore the effectiveness of this new approach.  
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1. INTRODUCTION

The rapid progression of Wireless Sensor Networks 

(WSNs) technology has extended its applications in various 

fields, significantly augmenting the demand for real-time 

image transmission and compression [1-4]. Comprising of 

numerous low-cost, low-power sensor nodes with 

computational and communicational abilities, WSNs have 

found widespread use in areas such as environmental 

monitoring, security surveillance, smart transportation, and 

healthcare [5-10]. Real-time image transmission in WSNs 

carries substantial importance as it delivers timely and 

accurate information to users, aiding in precise decision-

making [11-16]. 

However, due to the specificities of WSNs, real-time image 

transmission faces an array of challenges. Primarily, wireless 

sensor nodes typically have a limited energy source, making 

energy efficiency crucial for extending network lifespan. 

Moreover, bandwidth constraints of WSNs result in lower data 

transmission rates [17]. Furthermore, the limited 

computational ability of sensor nodes cannot support complex 

image processing and compression algorithms [18-22]. 

Therefore, to implement real-time image transmission and 

compression in WSNs, these challenges need to be 

surmounted to ensure efficient utilization of energy, 

bandwidth, and computational resources. 

While existing methods for real-time image transmission 

and compression have, to some extent, addressed these issues, 

they still have certain shortcomings [23-25]. On the one hand, 

many current methods overlook the energy constraints of 

sensor nodes, leading to premature energy exhaustion and 

affecting network stability and reliability. On the other hand, 

existing compression methods might introduce significant 

compression distortion while reducing the image data volume, 

thereby degrading image quality. Additionally, some 

algorithms are excessively complex and unsuitable for 

wireless sensor nodes with limited computational capabilities. 

Hence, this work aims to investigate a real-time image 

transmission and compression algorithm based on WSNs. The 

algorithm takes into account the characteristics of WSNs, 

addressing the drawbacks and deficiencies of current methods. 

The second chapter of the study constructs a novel joint 

source-channel coding scheme, the reconstructed image 

quality of which is comparable to a coding-decoding scheme 

optimized for each user's channel condition. The third chapter 

presents a post-processing network model that resolves the 

compression artifacts, enabling superior reconstruction quality 

for real-time images even under high compression ratios at low 

bit rates. The effectiveness of the proposed method is validated 

through experimental results. 

2. REAL-TIME IMAGE TRANSMISSION CODING

SCHEME BASED ON WIRELESS SENSOR

NETWORKS

In scenarios of real-time image processing based on 

wireless sensor networks, channel conditions within these 

networks are prone to changes due to influences such as path 

loss, shadowing, multipath fading, interference, and noise. 

Traditional separated coding schemes could be heavily 

impacted when the actual channel conditions diverge from the 
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optimized conditions. Joint source-channel coding schemes 

are designed with an adaptive signal-to-noise ratio capability, 

equipping them to adapt to varying channel states and 

effectively respond to changes in channel conditions. 

In multi-user scenarios where each user's channel 

conditions may vary significantly, joint source-channel coding 

schemes have the advantage of requiring only a single trained 

model to adapt to all channel states. This implies that the same 

decoder can be deployed on different user ends, thereby 

reducing the burden of deployment and maintenance, and 

lowering system complexity. The reconstructed image quality 

offered by the joint source-channel coding scheme proposed 

in this study is nearly equivalent to that of encoding and 

decoding schemes optimized for each user's channel 

conditions. This indicates that while ensuring adaptability and 

versatility, the scheme can maintain high image quality, 

meeting the demands of real-time image transmission. Figure 

1 presents the architecture of the signal-to-noise ratio adaptive 

enhancement model. 

In the context of real-time image processing based on 

wireless sensor networks, a signal-to-noise ratio adaptive 

model is designed, adopting an autoencoder structure and 

employing multiple convolutional layers for feature extraction 

and compressed representation. The model is capable of 

autonomously learning to extract useful information from the 

original images. Utilizing the PReLU activation function, 

which has strong non-linear fitting capabilities, helps enhance 

the model's expressive power. By adjusting the number of 

convolution filters in the final layer, the bandwidth 

compression ratio can be flexibly optimized to accommodate 

varying channel conditions. This facilitates more efficient 

image transmission within the constraints of limited 

bandwidth resources. Adding an average power constraint 

normalization layer after the output of the last convolutional 

layer can restrict the power of the encoded signal, reducing 

energy consumption and catering to the low-energy 

requirements of sensor nodes in wireless sensor networks. 

 

 
 

Figure 1. Signal-to-noise ratio adaptive enhancement model 

 

 
 

Figure 2. Encoder/Decoder structure 

The encoder/decoder structure of the signal-to-noise ratio 

adaptive model developed in this study is depicted in Figure 2. 

To enhance decoding performance, the decoder uses pilot 

signals sent by the transmitting end to estimate the signal-to-

noise ratio, enabling adaptive adjustment of the decoding 

process based on channel conditions. In order to take into 

account the impact of the signal-to-noise ratio for more precise 

decoding, the estimated signal-to-noise ratio by the decoder is 

expanded into a signal-to-noise ratio map of the same 

dimensions as the merged data. The real and imaginary parts 

of the complex channel output samples are merged, 

simplifying the decoder's handling of complex channel outputs 

and improving computational efficiency. Using transposed 

convolution layers can achieve upsampling and feature 

restoration of encoder outputs, effectively restoring the 

original image. The addition of pilot signals to channel outputs 

as the input to the transposed convolution layer enhances 

decoding performance. The use of the Sigmoid function as the 

activation function in the final transposed convolution layer 

restricts the output within the range of [0, 1], consistent with 

the range of the normalized input image, simplifying the 

restoration of the original image. The expression of the 

Sigmoid function is given below: 
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Due to the convolution operation in the encoding process, 

the image resolution is reduced. Therefore, to restore the 

original image resolution, up-sampling of the feature maps is 

needed at the decoding end using transposed convolution 

layers. This is crucial for real-time image processing scenarios, 

as we need to ensure that the decoded image maintains the 

same spatial dimensions (height and width) as the original 

image to preserve the integrity of image information. The up-

sampling process of the transposed convolution layers retains 

the spatial information of the original image, which is essential 

for real-time image processing applications (such as object 

detection, segmentation, etc.) that often require precise 

analysis of spatial locations and dimensions in images. 

To recover the operations performed by the encoder at the 

decoding end, the decoder's structure is typically symmetrical 

to the encoder's structure. The hyperparameters (such as kernel 

size, stride, and padding) of the remaining transposed 

convolution layers in the decoder, except for the final 

convolution layer (used to produce the final output image), are 

consistent with the corresponding convolution layers in the 

encoder. This helps recover spatial information and feature 

hierarchy layer by layer during the decoding process. 

Meanwhile, in real-time image processing scenarios, 

computing resources and bandwidth are limited. Therefore, 

when setting model hyperparameters, there is a need to 

balance computational complexity and performance. Larger 

kernels, smaller strides, and appropriate padding can improve 

model performance but also increase computational 

complexity. When selecting hyperparameters, the trade-offs 

should be made according to specific application scenarios and 

resource constraints to achieve the best performance. 

In the encoding and decoding networks of wireless sensor 

networks for real-time image transmission, this paper adopts 

the PReLU activation function, which adds a linear term su to 

the negative value input. The expression of the nonlinear 

activation function d is given by the following equation for 

input tu in the u-th channel, with the slope controlled by su: 
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To further enhance the performance of real-time image 

transmission, this paper constructs an enhanced model based 

on the original baseline model. This includes adding 

generalized split normalization layers and their inverse 

transformation layers to the encoding and decoding networks. 

Assuming that the feature map input of the u-th layer is 

represented by zu, the parameters to be learned are represented 

by αu and εu, and the core formula is given by the following 

equation: 
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In real-time image processing scenarios of wireless sensor 

networks, bandwidth resources are limited, so image 

compression is required during the encoding process. The 

proposed signal-to-noise ratio (SNR) adaptive model in this 

paper adjusts the bandwidth compression ratio by changing the 

number of filter channels c in the last convolution layer of the 

encoder, thus achieving different degrees of compression. This 

method can effectively reduce the demand for transmission 

bandwidth while ensuring image quality. To facilitate 

comparison with the baseline model, the network parameter 

settings of the proposed SNR adaptive model (such as the filter 

size, number, and stride in the encoder and decoder networks) 

are kept consistent with the baseline model. This helps to 

accurately evaluate the performance advantages and 

disadvantages of the SNR adaptive model under the same 

conditions. 

The baseline model trains and tests corresponding models 

for different SNR values. In contrast, the proposed SNR 

adaptive model adapts the encoding and decoding processes to 

different SNR scenarios with bandwidth compression ratios of 

1/12 and 1/6. This adaptive capability helps improve the 

robustness and performance of the model in real-time image 

processing applications. 

The source bandwidth in this paper is defined as the 

dimension of the input real-time transmission image, 

represented by b. The channel bandwidth is defined as the 

dimension of the complex channel input, represented by j. The 

bandwidth compression ratio E is calculated by the following 

equation: 

 

j
E

b
=  (4) 

 

However, in the actual image transmission process, the 

encoder output data will be divided into two parts. This paper 

considers them as the real and imaginary parts of the complex 

number and merges the j-value complex noise channel input 

samples. The following equation gives the relationship 

between j and v: 
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By combining the above two equations, we have the 

following relationship between v and the bandwidth 

compression ratio: 
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The mean squared error between the original input image 

and the reconstructed image is defined as the model's loss 

function. Assuming the number of samples is represented by 

B, the function expression is given by the following equation: 
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3. REAL-TIME IMAGE COMPRESSION BASED ON 

POST-PROCESSING 

 

This section elaborates on the constraints within wireless 

sensor networks where limited bandwidth necessitates the 

compression of images during transmission. The subsequent 

quality loss and artifacts produced due to this compression 

form a significant challenge. A post-processing network 

model is proposed to address the issue of compression artifacts, 

aiming to achieve superior reconstruction quality under high 

compression ratios at low bit rates. A Convolutional Neural 

Network (CNN) post-processing network with a large 

receptive field is introduced, allowing for the capture of more 

extensive contextual information which aids in the precise 

restoration of compressed image details. Furthermore, the use 

of multi-scale features facilitates the processing of images at 

various scales, enhancing the robustness and performance of 

the model when dealing with different scales and complexities 

of image tasks. 

A residual structure is adopted to facilitate the effective 

training of the proposed post-processing network. The 

utilization of the residual structure assists in mitigating 

problems related to gradient vanishing and gradient explosion, 

easing the training process and consequently improving model 

performance. The post-processing network employs an end-

to-end training approach, learning the mapping relationship 

directly from compressed images to high-quality images. This 

end-to-end training simplifies the model training process, 

while concurrently enabling automatic learning of features 

throughout the network that contribute to improving the 

reconstruction quality. Figure 3 presents the logical steps of 

the real-time image compression algorithm. 

In the context of real-time image processing based on 

wireless sensor networks, three enhancement modules are 

incorporated into the constructed post-processing network. 

This is to prevent excessive network depth when processing 

full-resolution images, thereby reducing computational costs. 

Within the wireless sensor network, computational resources 

are typically scarce; hence, a relatively shallow network 

structure is advantageous for saving computational resources 

and enhancing real-time performance. Each enhancement 

module contains two multi-scale residual blocks, employing 

convolution kernels of different sizes (e.g., 5x5, 3x3, 1x1), 

enabling the network to capture image features at various 

scales. This multi-scale feature enhances the performance of 

the network in handling image tasks of different scales and 

complexities. Following the convolution layers, a Leaky ReLU 

activation function is applied. Compared to the traditional 

ReLU activation function, Leaky ReLU offers a non-zero 

997



 

gradient in the negative region, assisting in addressing the 

problem of gradient vanishing and improving the stability of 

model training. At the end of the post-processing network, a 

1x1 convolution adjusts the number of image channels, 

followed by a global residual learning to obtain the enhanced 

quality image. Global residual learning aids the network in 

directly learning the difference between compressed images 

and high-quality images, thereby improving the quality of the 

reconstructed image. The proposed post-processing network 

can be easily integrated into the entire compression system and 

optimized efficiently in an end-to-end manner. This end-to-

end training simplifies the model training process, while 

concurrently enabling automatic learning of features 

throughout the network that contribute to improving the 

reconstruction quality. Figure 4 demonstrates the framework 

of the post-processing network model. 

 

 
 

Figure 3. Logical steps of the real-time image compression algorithm 

 

 
 

Figure 4. Framework of the post-processing network model 

 

The multiple scale residual block under discussion 

encompasses convolution kernels of diverse dimensions, 

aiding in the extraction of image features across varied scales. 

In applications pertaining to real-time image processing, the 

presence of structures and details at multiple scales within an 

image can be better captured by the multiple scale residual 

block, thereby enhancing image reconstruction quality. 

Concurrently, as network depth augments, there may be a 

gradual loss of features during transmission, leading to 

underutilization. This issue can be mitigated by the multiple 

scale residual block, which effectively extracts and utilizes 

features of different scales, improving model performance. 

Figure 5 depicts the structure of a multiple scale residual block. 

Two branches featuring convolution kernels of differing 

sizes are present within a multiple scale residual block, and 

information across these branches can be shared. Given that 

the network's weights are represented by q and bias by n, the 

computation process is expressed as follows:  
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 ( )3

3 3 1 2 3,S q S N n 
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Notably, the superscripts and subscripts of weights 

symbolize the convolution layers and their corresponding 

kernel sizes, while the fusion operations are represented by [S1, 

S2], [N1, S1], and [S2, N2]. The slope of the function when z<0 

is controlled by N-S, and a Leaky ReLU function is utilized as 

the activation function, expressed by Eq. (13): 
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Residual learning is employed for each multi-scale residual 

block in this study to achieve greater network execution 

efficiency. Suppose the output of the multiple scale residual 

block is denoted by z', the computation formula for the 

multiple scale residual block is given by Eq. (14): 
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Dilated convolution is capable of expanding the model's 

receptive field without increasing the number of network 

parameters to be learned or altering the size of input features. 

This allows the model to learn larger-scale feature correlations 

while maintaining relatively low computational complexity, 

contributing to improved image reconstruction quality. In real-

time image processing scenarios based on wireless sensor 

networks, the issue of compression artifacts not being entirely 

removed by neighborhood information may arise. Dilated 

convolution can learn feature correlations within a wider range, 

assisting in the elimination of compression artifacts, and 

consequently enhancing image reconstruction quality. 

The real-time image to be transmitted, z, is considered as a 

function z: X2→E, with the convolution kernel j of size 

(2e+m)×(2e+m) represented by j: Ψe→E, where Ψe={-e, 

e}2∩X2. Assuming two-dimensional indexing is expressed by 

o, a, y∈X2, the definition of the convolution operator *f with 

dilatation coefficient f is given by Eq. (15): 
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+ =
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Compared to conventional convolution, when dilation 

factors are set at 1, 2, 4, ..., 2b-1, the receptive field of dilated 

convolution can reach (2b-1-1)×(2b-1-1). 

Mean Square Error (MSE) is a commonly used metric to 

measure image reconstruction quality, quantifying pixel-level 

discrepancies between the reconstructed and original images. 

The use of MSE as one of the loss functions effectively guides 

the model to reduce pixel-level differences between the 

reconstructed and original images during training. Multi-Scale 

Structural Similarity (MS-SSIM) is an image quality 

assessment method based on human visual systems, measuring 

image similarity across different scales and structures. 

Implementing MS-SSIM as one of the loss functions aids the 

model in preserving the structural information of the original 

image during training, thereby improving the quality of the 

reconstructed image. MSE and MS-SSIM, measuring image 

reconstruction quality from the perspectives of pixel-level 

differences and structural similarity, respectively, are 

combined as the loss function. This approach facilitates a more 

comprehensive evaluation of model performance and assists 

in obtaining reconstructed images that perform well across 

multiple evaluation metrics. 

Assume the output of the post-processing network and the 

original image are denoted by Z' and Z, respectively. If Peak 

Signal-to-Noise Ratio (PSNR) is chosen as the quality 

evaluation metric for real-time transmitted images, the 

optimization target of the post-processing network model can 

be established as follows:  
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If MS-SSIM is selected as the quality evaluation metric for 

real-time transmitted images, considering that its value range 

is [0,1] and the higher the index value, the better, and the 

smaller the loss function value, the better, the optimization 

target of the post-processing network model can be set as 

follows: 
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Figure 5. Multi-scale residual block structure diagram 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 6 depicts experimental results obtained on the test set 

across different models. From the figure, it can be inferred that 

the performance of varying models on the test set varies. The 

performance of the baseline model and the model presented in 

this study, across different Signal-to-Noise Ratio (SNR) 

conditions (trained at 0dB, 10dB, and 20dB, respectively), is 

charted. The chosen performance metric is the Peak Signal-to-

Noise Ratio (PSNR) or a similar measure. It is discernible from 

the figure that the performance of all models improves with an 

increase in test SNR values. This is due to the fact that higher 

SNR values lead to less noise in the images, allowing the 

models to learn useful features more effectively. At lower test 

SNR values, the performance of the model presented in this 

study is comparable to the baseline model (trained at 

SNR=0dB), suggesting that this model exhibits superior 

performance under conditions of low SNR. At higher test SNR 

values, the model's performance surpasses the baseline model 

(trained at SNR=0dB), indicating stronger generalization 

ability under higher SNR conditions. Moreover, irrespective 

of the test SNR values, the performance of the model in this 

study outperforms the baseline models (trained at SNR=10dB 

and 20dB), demonstrating the model's robust performance 

across different SNR conditions. 

Figure 7 serves to evaluate the robustness of the Signal-to-

Noise Ratio adaptive enhancement model. This figure presents 

the performance under different test SNR conditions, 

including no noise SNR, noise SNR=1dB, and noise SNR =4dB. 

The performance metric again chosen is the PSNR. It can be 

seen that the performance of the noiseless SNR increases with 

the rise of the test SNR, due to the lesser noise in the images 

under high SNR conditions, thereby making it easier for the 

model to learn useful features. The performance of the model 

with noise SNR=1dB is very close to that of the model with no 
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noise SNR at every test SNR, which suggests that the SNR 

adaptive enhancement model possesses strong robustness 

under slight noise interference (such as 1dB). At lower test 

SNR (like 0 and 2.5), the performance of the model with noise 

SNR=4dB is slightly lower than that of the noiseless SNR. 

However, at higher test SNR values (like 10 and above), the 

performance of the model with noise SNR=4dB is close to that 

of the noiseless SNR, implying that the SNR adaptive 

enhancement model displays commendable robustness under 

a certain degree of noise interference (such as 4dB), 

particularly under high SNR conditions. 
 

 
 

Figure 6. Experimental results obtained on the test set across 

different models 

 

 
 

Figure 7. Robustness verification of signal-to-noise ratio 

adaptive enhancement model 
 

Figure 8 allows for a comparison of the PSNR distortion 

curve for different algorithms. This figure demonstrates the 

performance of various image compression algorithms, 

including JPEG, JPEG2000, Hyperprior, WebP, BPG, 

H.264/AVC, and the model presented in this study, at different 

Bits per pixel (Bpp). PSNR serves as the performance metric. 

The graph reveals that the performance of JPEG is generally 

lower across all algorithms. This is primarily due to JPEG's 

use of a simple DCT (Discrete Cosine Transform) 

compression method, which may not be sufficient to capture 

the detailed information in the image. At lower Bpp, the 

performance of JPEG2000 and Hyperprior are similar, 

indicating their superior compression performance under 

lower bit rates. However, at higher Bpp, JPEG2000 

outperforms Hyperprior. WebP and BPG exhibit good 

performance in the mid-Bpp range, indicating that they can 

maintain high image quality even under some degree of 

compression. H.264/AVC performs better at higher Bpp, 

suggesting good compression performance at high bit rates. 

Across all bit rates, the performance of the model presented in 

this study is generally superior to or close to the other 

algorithms, implying the model's ability to maintain high 

image quality at different compression ratios, thus 

demonstrating superior compression performance. 

Figure 9 presents an evaluation of image quality and 

transmission performance under different signal-to-noise ratio 

(SNR) conditions across various channels. Figure 9(a) lists the 

performances of anti-counterfeiting channels and wireless 

road channels under different SNRs, using Peak Signal-to-

Noise Ratio (PSNR) as a performance metric. As depicted in 

the figure, in anti-counterfeiting channels, PSNR gradually 

increases with a rise in SNR. This suggests that under higher 

SNR conditions, the noise in the channel is minimized, thus 

ensuring better image quality. The PSNR fluctuations in the 

wireless road channels are comparatively higher, lacking a 

clear trend of increasing with SNR. This can be attributed to 

the multiple complex interferences in the wireless road 

channels, leading to unstable PSNR performance. Under 

similar or close SNR conditions, the PSNR of the anti-

counterfeiting channel typically surpasses that of the wireless 

road channel, indicating a superior signal fidelity in the image 

transmission process for anti-counterfeiting channels. In 

contrast, the wireless road channel's image quality might 

decline due to various disturbances. 

Figure 9(b) illustrates the performances of anti-

counterfeiting channels and wireless road channels under 

different SNRs, this time using Structural Similarity Index 

(SSIM) as the performance metric. As shown in the figure, the 

SSIM of anti-counterfeiting channels gradually rises with 

increasing SNR, indicating better image quality under higher 

SNR conditions due to less channel noise. However, the SSIM 

changes in wireless road channels are relatively more unstable, 

showing no apparent trend of increasing with SNR, likely due 

to complex interferences in these channels. When SNR 

conditions are similar or close, the SSIM of the anti-

counterfeiting channel usually outperforms that of the wireless 

road channel. Again, this points towards superior signal 

fidelity in the image transmission process of the anti-

counterfeiting channels, while image quality in the wireless 

road channel might suffer due to various interferences. 

As indicated by Figure 10, analysis of different SNR 

scenarios regarding the Peak-to-Average Power Ratio (PAPR) 

can be undertaken, both prior to and following suppression. In 

Figure 10(a), Peak Signal-to-Noise Ratio (PSNR) performance 

is listed under varying Signal-to-Noise Ratios (SNRs), both 

before and after PAPR reduction. The graph indicates that the 

PSNR value increases after PAPR reduction under certain SNR 

conditions. This suggests that PAPR suppression techniques 

can improve image quality to a certain extent. However, under 

other SNR conditions, the PSNR value doesn't increase after 

PAPR reduction, likely due to the limited improvement these 

PAPR suppression techniques can bring about to image quality 

under these circumstances. As SNR increases, a gradual 

increase in PSNR values is observed, suggesting that a higher 

SNR ensures better image quality due to less noise in the 

channel. 
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Figure 8. Comparison of the PSNR distortion curve for 

different algorithms 

 

 
(a) 

 

 
(b) 

 
Figure 9. Evaluation of image quality and transmission 

performance under different signal-to-noise ratio (SNR) 

conditions across various channels 

 

 
(a) 

 

 
(b) 

 

Figure 10. Compression image quality evaluation and 

transmission performance under different SNR conditions 

before and after peak-to-average power ratio suppression 

 

Furthermore, Figure 10(b) depicts Structural Similarity 

Index Measure (SSIM) performance under various SNRs, both 

before and after PAPR reduction. An improvement in the SSIM 

value under certain SNR conditions post PAPR suppression is 

seen. This suggests that PAPR suppression techniques can 

improve structural similarity of images to a certain extent. 

However, under other SNR conditions, the SSIM value does 

not increase after PAPR reduction, likely due to the limited 

improvement PAPR suppression techniques can bring about to 

structural similarity of images under these circumstances. As 

SNR increases, a gradual increase in SSIM values is observed, 

suggesting that a higher SNR ensures better structural 

similarity due to less noise in the channel. 

In conclusion, there exist discrepancies in SSIM 

performance prior to and after PAPR suppression under 

different SNR scenarios. The potential improvement brought 

about by PAPR suppression techniques to image structural 

similarity might be more evident under certain SNR conditions 
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and limited under others. In real communication systems, 

choosing an appropriate channel and optimizing channel 

parameters can contribute to enhancing image quality and 

transmission effectiveness. 

 

 

5. CONCLUSION 

 

This study conducted a study on real-time image 

transmission and compression algorithms based on wireless 

sensor networks. A new joint source-channel coding scheme 

has been constructed, and the quality of the reconstructed 

image of this scheme is close to the codec scheme optimized 

for each user's channel conditions. A post-processing network 

model has been proposed to solve the problem of compression 

artifacts in order to obtain a better quality of real-time images 

under high compression ratios and low bit rates. The validity 

of the proposed method has been confirmed by experimental 

results. Based on the experimental results, the following 

conclusions can be drawn: 

(1) Under certain Signal-to-Noise Ratio (SNR) conditions, 

the PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural 

Similarity Index) values after Peak-to-Average Power Ratio 

(PAPR) suppression have improved, indicating that the image 

quality and structural similarity have been enhanced. However, 

under other SNR conditions, the PSNR and SSIM values after 

PAPR suppression did not show significant improvements, 

which could be due to the limited enhancement of image 

quality and structural similarity by PAPR suppression 

technology under these conditions. 

(2) As the SNR increases, the PSNR and SSIM values show 

an overall increasing trend. This suggests that in situations 

with high SNR, there is less noise in the channel, which 

ensures better image quality and structural similarity. 

(3) In actual communication systems, choosing the 

appropriate channel and optimizing channel parameters can 

help to improve image quality and transmission effects. At the 

same time, the application effect of PAPR suppression 

technology should be evaluated according to actual conditions 

in order to improve the performance of the image transmission 

system. The role of PAPR suppression technology in 

enhancing image quality and structural similarity may vary 

depending on the SNR. 

These conclusions present the potential to further advance 

the field of real-time image transmission and compression, 

particularly in wireless sensor networks, and provides an 

empirical basis for future exploration. 
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