Flow characteristics of the new type of mixer in wastewater treatment

Fei Tian1,3*, Weidong Cao2, Xiaoli Dai1, Mingxiong Ou2

1 School of energy and power engineering, Jiangsu University, Zhenjiang 212013, China
2 National Research Center of Pumps and Pumping System Engineering and Technology, Zhenjiang 212013, China
3 Yatai Pump & Valve Co., Ltd., Taizhou, Jiangsu 220000, China

Corresponding Author Email: tianfei@ujs.edu.cn

https://doi.org/10.18280/ijht.360318

Received: 9 February 2018
Accepted: 18 June 2018

Keywords:
new type of mixer, CFD, flow filed, simulation, fluid dynamics

ABSTRACT

This paper studies the flow field of a new type of submersible mixer with two impellers and six blades in the wastewater treatment pool by using large-scale software, such as Pro/engineering, FLUENT 15.0 and ICEM. After that, it numerically simulates the wastewater treatment pool using the RNG k-ε turbulent model and the mobile coordinate measuring system, and analyzes the macro fluid field and flow field distribution of the sections. The fluid in the wastewater treatment pool can be propelled by the new type of mixer, and the fluid flows along the axial direction of the submersible mixer and diffuses radially. Eight water and sludge cycles are formed in the pool, and the fluid in the pool forms two high-flow region and eight low-flow regions. The velocity distribution in the pool is distributed symmetrically along the plane Z=0m and the plane X=1.75m. As the new type of mixer is installed close to the bottom of the pool, the position with the maximum velocity offsets gradually to the bottom of the pool with the increasing distance to the impeller. The new type of mixer is different from the traditional submersible mixer, in that the fluid mixed by the new one can circulate fully on both sides of the submersible mixer. Consequently, this new type of submersible mixer can mix more fluid, and there will be a smaller dead zone in the whole pool with less sludge at the bottom. This simulation method can guide the application of mixers in the practical wastewater treatment.

1. INTRODUCTION

It has been almost 60 years since the mixer was invented. Now, as the essential equipment for wastewater treatment, it is applied widely in agriculture, petroleum, manufacturing and chemical industry, etc. The utilization rate of mixers is up to 50% in the wastewater treatment equipment. This kind of mixer is also called the submersible mixer because it is installed under water. The fluid stirred by the submersible mixer in the pool is complex and affected by the walls of the pool and the mixer. In the recent 20 years, many researchers have studied the submersible mixer and obtained many meaningful results.

Currently, a mixer impeller has two or three blades. In this paper, the new type of submersible mixer has two impellers and six blades, and summarizes its flow field characteristics.

2. STUDY OBJECT

The wastewater treatment pool is 10m long, 3.5m wide and 5.5m deep. As shown in Figure 1, the new type of mixer is a submersible mixer, which has two impellers with six blades. The motor is in the middle, and on each side is an impeller with three blades. The diameter of the impeller is 380mm, the hub diameter 90mm, and the rotational speed 680rpm. Both impellers rotate clockwise. As shown in Figure 2, the new type of mixer is installed 1m above the bottom in the middle of the pool. The coordinate O’ of the centre position of the mixer is (1.75, 1, 0). The fluid model is built by the software PRO/E, and the inlets and outlets of the impellers are shown in Figure 1.

![Figure 1. New type of submersible mixer](image1)

![Figure 2. Size of pool and the location of submersible mixer](image2)
In order to simplify the calculation, the mixing medium of the mixer is water, whose density is $1 \times 10^3 \text{kg/m}^3$ and viscosity is $1 \times 10^{-3} \text{kg/m/s}$ at 20°C and atmospheric pressure.

3. SIMULATION

3.1 Grid

The large-scale software ICEM is used to divide the grid, and meshes near the interfaces between the impellers and the pool are local mesh refined [6-12]. There are a total of about 3,000,000 grid nodes, with 600,000 nodes of water in each impeller and 1,700,000 nodes of water in the pool, as shown in Figure 3-Figure 5.

3.2 Calculation equation

For the fluid, that cannot be compressed, its CFD expressions include the continuity equation, the momentum equation and the RNG k-ε turbulence equation.

$$\frac{\partial u_i}{\partial x_j} = 0$$

$$\rho \frac{\partial u_i}{\partial t} + u_j \rho \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_j^2} + \rho f_i$$

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_i k)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\alpha_i \mu \frac{\partial k}{\partial x_j} \right] + G_k + \rho \varepsilon$$

$$\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho u_i \varepsilon)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[\alpha_i \mu \frac{\partial \varepsilon}{\partial x_j} \right] + \frac{C_1}{k} G_k - C_2 \varepsilon \frac{\varepsilon^2}{k}$$

In the expressions, $i, j=1,2,3$; $\rho \frac{\partial u_i}{\partial x_j}$ is non-constant, $u_j \frac{\partial u_i}{\partial x_j}$ is convection, $\mu \frac{\partial^2 u_i}{\partial x_j^2}$ is diffusion, ρf_i is volume force, $C_1=1.42$, and $C_2=1.68$, k is the turbulence power, and ε is the dissipation rate [1-12].

3.3 Fluent boundary conditions and parameters

The study adopts the fluid mechanics software FLUENT15.0, the finite volume discretization method as well as the SIMPLE method and the RNG k-ε turbulence model. It is assumed that the surfaces of all walls, the stirring axis and the blades are in the non-slip condition; and the stirring blades and stirring axis are set at the appropriate rotation velocities. The convergence criterion is that the residual absolute values of all variables are less than 10^{-5} [8-25].

4. SIMULATION ANALYSIS

The plane $X=1.75\text{m}$, plane $Z=0\text{m}$ and plane $Y=1\text{m}$ are parallel to the long sidewall, the short sidewall and the bottom of the pool, respectively. The axis of the mixer is in plane $X=1.75\text{m}$, and plane $Y=1\text{m}$. Figure 6 is the streamlines in plane $X=1.75\text{m}$, plane $Y=1\text{m}$, plane $Z=0\text{m}$ and the whole pool. The fluid in the pool is divided into ten areas by those three planes. The average velocity of the fluid in the pool can be obtained, which is about 0.12m/s, greater than 0.1m/s. It meets the standard for submersible operation. Because of the high-speed rotation of the impellers, the fluid nearby absorbed into the impellers obtain great kinetic energy. The high-speed fluid rushes out from the impellers, and suck the nearby fluid. They flow together, forming two high-speed areas in the axis direction of the mixer. The fluid in the pool can be propelled by the new type of submersible mixer. It flows along the axial direction of the submersible mixer and diffuses radially. The high-speed fluid changes its flow direction to the long sidewall, the bottom and the top of the pool when it meets the short sidewall. At the same time, the fluid near the mixer, which is at the bottom and center of the pool, is sucked into the impellers. So four water cycles are formed above the high-speed fluid area, and other four ones below the high-speed fluid area. However, the fluid velocities in the eight areas are lower than those in the other two high-speed ones.
The velocity distributions of section X, section Y and section Z are respectively shown in Figure 7, 8 and 9. As can be clearly seen, the fluid flow is symmetrically distributed from the centre of the mixer. In Figure 7, plane X=1.2m and plane X=2.3m, which are at the same distance to plane X=1.75, have the same velocity distribution. Plane X=0.2m and plane X=3.3m, which are at the same distance to plane X=1.75, have the same velocity distribution. In Figure 7, plane X=1.2m and plane X=2.3m, which are at the same distance to plane X=1.75, have the same velocity distribution. Plane X=0.2m and plane X=3.3m, which are at the same distance to plane X=1.75, have the same velocity distribution. Plane X=1.75m is distributed symmetrically along the Y-axis, the curve of velocity in the right half of plane X=1.75m is obtained from the software FLUENT 15.0. The velocity distribution curves of line Z=0.4m, line Z=1m, line Z=3m and line Z=4m in plane X=1.75m are shown in Figure 10. The curves of lines Z=0.4m and Z=1m are both of a saddle shape, with a lower velocity in Y=1m under the effect of the impeller hub. The closer it is to the hub, the greater impact there will be on the velocity of the fluid at the center position of Y=1m, and the lower its velocity will be near Y=1m. Two maximum velocity peaks occur in Y=0.92m and Y=1.08m, and the velocity in Y=0.92m is slightly larger than that in Y=1.08m. The maximum velocity
of line $Z=3m$ and line $Z=4m$ is in $Y=0.9m$ and $Y=0.85m$, respectively. The position with the maximum velocity will offset to the bottom of the pool with the increasing distance to the impellers. As the submersible mixer is installed close to the bottom of the pool, the fluid flow shifts toward the bottom of the pool gradually, where the attachment phenomenon occurs.

Figure 8. Velocity distribution of section Y

Figure 9. Velocity distribution of section Z

Figure 10. Velocity distribution of Line Z (Plane X=1.75m)
The velocity distribution curves of line Z=0.4m, line Z=1m, line Z=3m and line Z=4m in plane Y=1m are shown in Figure 11. The curves of line Z=0.4m and Z=1m are both of a saddle shape, with a lower velocity in X=1.75m under the effect of the impeller hub. Two maximum velocity peaks occur in X=1.6m and X=1.9m, and the velocity in X=1.9m is slightly larger than that in X=1.6m. The maximum velocity of line Z=3m and line Z=4m is both in Y=1.75m because the mixer is installed to the sidewall of the pool symmetrically.

5. RESULTS

According to the working condition of the new type of mixer, the fluid in the wastewater treatment pool is simulated using FLUENT15.0. The results show:

(1) The fluid in the wastewater treatment pool can be propelled by the new type of mixer. The fluid flows along the axial direction of the mixer and diffuses radially. Eight water cycles with sludge are formed in the pool, and the fluid in the pool forms two high-flow regions and eight low-flow regions.

(2) The velocity distribution in the pool is symmetrical along the plane Z=0m and the plane X=1.75m. As the new type of mixer is installed close to the bottom of the pool, the position with the maximum velocity shifts gradually to the bottom of the pool with the increasing distance to the impeller.

(3) The traditional mixer with one impeller can only stir and propel the fluid in front of the outlet of the impeller in the new type of mixer. But the fluid in the pool mixed by the new type of mixer can form full circulation on both sides of the mixer.

ACKNOWLEDGEMENTS

This work was supported by Natural Science Foundation of Jiangsu Province (Grant Nos.: BK20160521, NO.: BK20170554), Jiangsu Postdoctoral Funding Program (2018K017A) Key Development Project of Zhenjiang City (Grant Nos.: SH2017049), the National Natural Science Foundation of China (Grant Nos.: 31601676)

REFERENCE

