










 

6. CONCLUSIONS  

 

Through the theoretical analysis and case study, the 

proposed liquid CO2 transport system was proved as feasible 

under the control of pipe pressure. The results show that the 

pressure of 2.2MPa is applicable for liquid CO2 transport 

system. By this system, the temperature of liquid CO2 could 

be controlled as low as -15oC. Besides, the pressure at liquid 

CO2 tank, vertical depth and pipe length directly bear on the 

pressure change in the pipe. The research findings provide 

valuable insights on the application of liquid CO2 in fire 

control in underground coal mines. 
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NOMENCLATURE 

 

F flow, m3⸱h-1 

P pressure, Pa 

T temperature, oC 

t time 

 

Greek symbols 

 

 

ρ density, kg⸱m-3 
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