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Abstract   

  In this paper, the results of the computing the special determinants have been 

obtained which can be applied in the additions of sever fractions and continued 

fractions. Without the computing of the special determinants, the additions of the 

sever fractions, and continued fraction will be very difficult or even impossible. In fact, 

the additions of sever fractions and continued fraction are the key to induce the 

formula of interpolations, which are often applied in simulate engineering. For 

example, in the outline design, from some points given to approach the unknown 

curve, the interpolation is necessary. But in the process of interpolation induced, must 

need the additions of sever fractions. and continued fraction to finish the 

computation .We use computation of the special determinants that greatly simplify the 

process of the addition .In this paper, the results of the computing the special 

determinants and the application for simplify the additions of sever fractions and 

continued fraction have been given.  
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1 Introduction   
 

 Some special determinants of the high-order determinant were discussed, whose 

elements of roads from 1 to n are the 0 order differentials of ( , 0,1,2... )j
ix i j n= ,the 

elements of roads from n+1 to 2n in the determinants are the 1 order differentials of 

( , 0,1,2... )j
ix i j n= ,and elements of roads from 2n+1 to 3n in the determinants are the 2 

order differentials of ( , 0,1,2... )j
ix i j n= .These determinants have been reduced to be the 

lower-order determinants that greatly simplifies the complex operation ,containing 

sever fractions, and continued fractions. For example, following are the results 

obtained in papers [1-6] . 

Lemma 1.1   

In paper [6] there is a following result;  
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Where ( ) 2,1
D 3n 4
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+ is the algebra cofactors dispelled the entries the n+2-th row、the 
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and 1 ,1(3 4) kD n ++ was dispelled the entries of the k-th row、 the 1st column in 

determinant D(3n+4) too .And 
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Lemma 1.2 
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Where ,1(3 1)kD n+  1,1(3 1)nD n ++ are the algebra cofactors of determinants (3 1)D n+  in 

following form: 
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and ( )kl n  is form (1.3). 

 

Lemma 1.3. 
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Where 1 ,1(3 1)n kD n + ++ , 1,1(3 1)nD n ++ are the algebra cofactors of determinants (3 1)D n+ in 

form (1.7). 

 

Lemma 1.4. 
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Where 2 1 ,1(3 1) n kD n + ++  1,1(3 1)nD n ++ are the algebra cofactors of the determinants in form 

(1.7) ,and ( )kl n!  is the form (1.4). 
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Where 1 ,1(3 4) kD n ++ is the algebra cofactors of determinants (3 4)D n + in form(1.2), 

and  ,1(3 1)kD n+ ,  n+1+k(3 1D n+ �Å   2 1 ,1(3 1) n kD n + ++  are the algebra cofactors of 

determinants in form (1.7)   

   

 Lemma 1.6. 

                

                                                            (1.11)                                                        

 

Where 2,1(3 4)nD n ++ is the algebra cofactors of determinants (3 4)D n + in form(1.2), 

and    n+1,1(3 1�ÅD n+ is the algebra cofactors of determinants in form (1.7)   

 

2. Main results 

Theorem 2.1 
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where ( )kl n , ( )kl nʹ′ , ( )kl n!!  are the form (1.3),(1.4),(1.5) and 0 ( 1)l n +  is the form 

(1.1),as 0k = :   
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   Proof .  According to form (1.10), we have:  
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The right hand of form (2.4) is replaced by above forms, following has been 

established. 
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that is the result of computing determinants D(3n+4) in form (2.7) : add-1 times 

the second column to the first column). .The determinant D(3n+4) in 

form(2.7) ,becomes: 
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Where we expands along the first column of D(3n+4) in form (2.4). 
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 From form (2.10) we have : 

          

 

 

It means theorem is correct.   

3. Application. 

To simplify, the following determinants, in which the element contains no 
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The results can be used in addition of several fractions; 
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An example 

It is meaningful to the interpolation method and is important tool in modeling and 

simulation .For example in simulation engineering, the following interpolation 
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0 0 0 1 1 1( , ), ( , ),..., ( , ).n n nA x y A x y A x y

can be used to design the satellite . If following dada were given: 

          

 

  The outline of satellite simulation must pass the above data. But to obtain the 

interpolation (3.16) .the computation of the special determinants is necessary. The 

more points (data) the more we can approach the outline of the satellite. But the 

solution of the problem for the above interpolations has not been seen in papers [7-14]. 

The theorems 2.1 are the basic of solution of the problem. Subject to the limit of paper 

pages, more results of application in interpolation will appear in other papers. 

 

Conclusion 

  The main results of this paper are the theorems 2.1 . They are the computation of 

high order determinants and their elements are consist of 0,1,2 order differentials 

whose elements of roads from 1 to n+1 in the determinants are the 0 order differentials 

of ( 0,1,2...)ix i = .and the elements of roads from n+2 to 2n+2 in the determinants are 

the 1 order differentials of ( 0,1,2...)ix i = ,and the elements of roads from 2n+3 to 3n+3 

in the determinants are the 2 order differentials of ( 0,1,2...)ix i = .Because of the high 

order ,to compute them are difficulty. But they have been reduced to the sum of 

several determinants which are lower-order. The several determinants of low order are 

easy to be computed, which is applied in A few continued fractions of complex 

operations. It is meaningful to the interpolation method, which is important tool in 

modeling and simulation .For example the design the outline of air plane, bigger ship 
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and satellite need interpolation. But the solution of the problem has not been seen in 

papers [7-14]. The theorems 2.1 are the basic of solution of the problem. Subject the 

limit of paper page, the more results of application in interpolation will appear in our 

other papers. 
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