| | 6 4 | 1 0 1 00 | ., | | no. | CTL 4 | |----|--|--|--|-------------------------------|--|---| | 1 | Co-authors Urame, C., Hoole, P.R. | Article title Design and implementation of hybrid Pico- Hydro-Photovoltaic (PV) solar power plant in Massy-Gahuku LLG | Kewords cross-flow turbine, Pico-Hydro plant, programmable logic controller | Vol., No., pp. 22, 6, 395-403 | DOI https://doi.org/10.18280/ejee.220601 | Citation Urame, C., Hoole, P.R. (2020). Design and implementation of hybrid Pico-Hydro-Photrovoltaic (PV) solar power plant in Massy-Galluku LLG. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 395-403. https://doi.org/10.18280/ejee.220601 | | 2 | Bouchta, S., Feddaoui, M. | Numerical simulation of free convection in a
three-dimensional enclosure full of nanofluid
with the existence a magnetic field | three-dimensional, nanofluid, magnetic
field, convection, finite volume method,
SIMPLEC, Hartmann number, numerical
simulation | 22, 6, 405-411 | https://doi.org/10.18280/ejce.220602 | Bouchta, S., Feddaoui, M. (2020). Numerical simulation of free convection in a three-dimensional enclosure full of nanofluid with the existence a magnetic field. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 405-411. https://doi.org/10.18280/ejee.220602 | | 3 | Rekik, A., Boukettaya, G. | State space modeling and stability analysis of a VSC-HVDC system for exchange of energy | VSC-HVDC transmission, energy,
linearized, state space modeling, small
signal stability, eigenvalue | 22, 6, 413-426 | https://doi.org/10.18280/ejee.220603 | Rekik, A., Boukettaya, G. (2020). State space modeling and
stability analysis of a VSC-HVDC system for exchange of energy.
European Journal of Electrical Engineering, Vol. 22, No. 6, pp.
413-426. https://doi.org/10.18280/ejee.220603 | | 4 | Yahdou, A., Djilali, A.B., Boudjema, Z.,
Mehedi, F. | Using adaptive second order sliding mode to improve power control of a counter-rotating wind turbine under grid disturbances | adaptive gains, counter-rotating wind
turbine, doubly fed induction generator, grid
disturbances, saturation functions, second
order sliding mode | 22, 6, 427-434 | https://doi.org/10.18280/ejee.220604 | Yahdou, A., Djilali, A.B., Boudjema, Z., Mehedi, F. (2020). Using adaptive second order sliding mode to improve power control of a counter-rotating wind turbine under grid disturbances. European Journal of Electrical Engineering. Vol. 22, No. 6, pp. 427-434. https://doi.org/10.18280/ejee.220604 | | 5 | Kushwaha, P.K., Bhattacharjee, C. | A research on selection of appropriate stability
index under adverse system conditions for the
assessment of voltage stability of an IEEE 14
bus power system | contingency analysis, one generation unit
tripped, power margin analysis, single line
to ground fault, voltage stability indices and
SLG fault | 22, 6, 435-446 | https://doi.org/10.18280/ejee.220605 | Kushwaha, P.K., Bhattacharjee, C. (2020). A research on
selection of appropriate stability index under adverse system
conditions for the assessment of voltage stability of an IEEE 14
bus power system. European Journal of Electrical Engineering,
Vol. 22, No. 6, pp. 435–446.
https://doi.org/10.18280/ejee.220605 | | 6 | Gongati, P.R.R., Marala, R.R., Malupu,
V.K. | Mitigation of certain power quality issues in wind energy conversion system using UPQC and IUPQC devices | improved unified power quality conditioner,
power quality, wind energy conversion
system, voltage sag, voltage swell | 22, 6, 447-455 | https://doi.org/10.18280/ejee.220606 | Gongati, P.R.R., Marnla, R.R., Malupu, V.K. (2020). Mitigation of certain power quality issues in wind energy conversion system using UPQC and IUPQC devices. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 447-455.
https://doi.org/10.18280/ejee.220606 | | 7 | Merdad, H., Renaud, M. | State of legislative and normative art in the fields of the environment, health and security of European electrical and electronic equipment | standards, WEEE, RoHS, REACh, ErP,
CEI 62430, ISO 14044, environmental
legislations | 22, 4-5, 293-300 | https://doi.org/10.18280/ejee.224-501 | Mendad, H., Renaud, M. (2020). State of legislative and normative art in the fields of the environment, health and security of European electrical and electronic equipment. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 293-300. https://doi.org/10.18280/ejee.224-501 | | 8 | Safia, Z.B., Allouch, M., Chaabane, M. | Decentralized T-S fuzzy control for solar PV powered water pumping system driving by induction motor | decentralized control, Induction Motor,
MPPT, PV pumping system, T-S fuzzy
control | 22, 4-5, 301-311 | https://doi.org/10.18280/ejee.224-502 | Safia, Z.B., Allouch, M., Chaabane, M. (2020). Decentralized T-S fuzzy control for solar PV powered water pumping system driving by induction motor. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 301-311. https://doi.org/10.18280/ejee.224-502 | | 9 | Boudechiche, G., Sarra, M., Aissa, O.,
Gaubert, J.P., Benlahbib, B., Lashab, A. | Anti-windup FOPID-based DPC for SAPF interconnected to a PV system tuned using PSO algorithm | direct power control, shunt active power
filter, AW-FOPID controller, particle swarm
optimization, fuzzy logic MPPT controller | 22, 4-5, 313-324 | https://doi.org/10.18280/ejee.224-503 | Boudechiche, G., Sarra, M., Aissa, O., Gaubert, J.P., Benlahbib, B., Lashab, A. (2020). Anti-windup FOPID-based DPC for SAPF interconnected to a PV system tuned using PSO algorithm. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 313-324. https://doi.org/10.18280/ejee.224-503 | | 10 | Pannila, E.A.R.L., Edirisinghe, M. | Characterization of switching transients in low
voltage power systems of tea factories in Sri
Lanka | switching transients, transient overvoltage,
transient protection, surge protection, surge
arresters, low voltage power systems, power
quality, transient energy | 22, 4-5, 325-334 | https://doi.org/10.18280/ejee.224-504 | Pannila, E.A.R.L., Edirisinghe, M. (2020). Characterization of
switching transients in low voltage power systems of tea factories
in Sri Lanka. European Journal of Electrical Engineering, Vol. 22,
No. 4-5, pp. 325-334. https://doi.org/10.18280/cjee.224-504 | | 11 | Kumar, P. | Power quality investigation by reduced switching UPQC | Active and Reactive Power (PQ),
Synchronous Reference Frame (SRF), Total
Harmonic Distortion (THD), Unified Power
Quality Conditioner (UPQC), Unit Vector
Template (UVT) | 22, 4-5, 335-347 | https://doi.org/10.18280/ejee.224-505 | Kumar, P. (2020). Power quality investigation by reduced
switching UPQC. European Journal of Electrical Engineering,
Vol. 22, No. 4-5, pp. 335-347. https://doi.org/10.18280/ejee.224-
505 | | 12 | Marín-Reyes, M., Aguayo-Alquicira, J.,
De León-Aldaco, S.E. | Calculation of optimal switching angles for a
multilevel inverter using NR, PSO, and GA- a
comparison | cascade multilevel inverter, total harmonic
distortion, optimization, genetic algorithm,
Newton-Raphson, particle swarm
optimization | 22, 4-5, 349-355 | https://doi.org/10.18280/ejee.224-506 | Marín-Reyes, M., Aguayo-Alquicira, J., De León-Aldaco, S.E. (2020). Calculation of optimal switching angles for a multilevel inverter using NR, PSO, and GA- a comparison. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 349-355. https://doi.org/10.18280/ejee.224-506 | | 13 | Benghalia, R., Cheriet, A., Amrani, I. | The finite volume method an alternative method for LF electromagnetic problems | 3D triangular mesh, FVM, force, torque, dynamics | 22, 4-5, 357-364 | https://doi.org/10.18280/ejee.224-507 | Benghalia, R., Cheriet, A., Amrani, I. (2020). The finite volume
method an alternative method for LF electromagnetic problems.
European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp.
357-364. https://doi.org/10.18280/ejee.224-507 | | 14 | Chtouki, I., Wira, P., Zazi, M., Cherif,
A.Y., Meddour, S. | A new control stratum applied to two
adaptation stages based on adaline-type
neuronal predictive control in a photovoltaic
solar conversion chain | photovoltaic generator (PVG), parallel
active power filter (PAF), power grid,
GMPPT, Finite set mode predictive current
control (FS-MPCC), Adaline Neuro-
Predictive (ANP) | 22, 4-5, 365-376 | https://doi.org/10.18280/ejee.224-508 | Chtouki, L., Wira, P., Zazi, M., Cherif, A.Y., Meddour, S. (2020).
A new control stratum applied to two adaptation stages based on
adaline-type neuronal predictive control in a photovolutia: solar
conversion chain. European Journal of Electrical Engineering.
Vol. 22, No. 4-5, pp. 365-376. https://doi.org/10.18280/ejee.224-
508 | | 15 | Rajesh, P., Shajin, F.H. | A multi-objective hybrid algorithm for planning electrical distribution system | GSA, Tabu search, DG, operation and maintenance cost, investment cost | 22, 4-5, 377-387 | https://doi.org/10.18280/ejee.224-509 | Rajesh, P., Shajin, F.H. (2020). A
multi-objective hybrid
algorithm for planning electrical distribution system. European
Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 377-387.
https://doi.org/10.18280/ejee.224-509 | | 16 | Khan, A.U. | Modeling and simulation of a metal oxide
lightning surge arrester for 132kV overhead
transmission lines | metal oxide surge arrester, lightning surge
arrester, simulation, MOV, residual voltage,
over-voltage, CFOV, EMPT-RV | 22, 4-5, 389-394 | https://doi.org/10.18280/ejee.224-510 | Khan, A.U. (2020). Modeling and simulation of a metal oxide
lightning surge arrester for 132kV overhead transmission lines.
European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp.
389-394. https://doi.org/10.18280/ejee.224-510 | | 17 | Djerboub, K., Allaoui, T., Champenois, G., Denai, M., Habib, C. | Particle swarm optimization trained artificial
neural network to control shunt active power
filter based on multilevel flying capacitor
inverter | ANN-PSO, Flying Capacitor Inverter (FCI),
non-linear load, power quality, SAPF,
Synchronous Reference Frame (SRF), THD | 22, 3, 199-207 | https://doi.org/10.18280/ejee.220301 | Djerboub, K., Allaoui, T., Champenois, G., Denai, M., Habib, C. (2020). Particle swarm optimization trained artificial neural network to control shunt active power filter based on multilevel flying capacitor inverter. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 199-207. https://doi.org/10.18280/ejee.203011 | | 18 | Elmahfoud, M., Bossoufi, B., Taoussi, M., El Ouanjli, N., Derouich, A. | Comparative study between backstepping adaptive and field oriented controls for doubly fed induction motor | control motor, DFIM, adaptive, Lyapunov | 22, 3, 209-221 | https://doi.org/10.18280/ejee.220302 | Elmahfoud, M., Bossoufi, B., Taoussi, M., El Ouanjli, N.,
Derouich, A. (2020). Comparative study between backstepping
adaptive and field oriented controls for doubly fed induction
motor. European Journal of Electrical Engineering, Vol. 22, No.
3, pp. 209-221. https://doi.org/10.18280/ejee.220302 | | 19 | Sumbung, F.H., Letsoin, Y. | Modeling and control of electric motors U.S.
electric motors type dripproff 1150 RPM/10
HP/240 volt using MATLAB/Simulink | simulation process interference DC motor
model, box chart and Simulink/ MATLAB | 22, 3, 223-232 | https://doi.org/10.18280/ejee.220303 | Sumbung, F.H., Letsoin, Y. (2020). Modeling and control of electric motors U.S. electric motors type dripproff 1150 RPM/10 HP/240 volt using MATLAB/Simulink. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 223-232. https://doi.org/10.18280/ejee.220303 | | 20 | Zhang, T., Lu, C., Zheng, Z. | Adaptive fuzzy controller for electric spring | electric spring, voltage stability, regulatory
factor, fuzzy controller, adaptive fuzzy
controller | 22, 3, 233-239 | https://doi.org/10.18280/ejee.220304 | Zhang, T., Lu, C., Zheng, Z. (2020). Adaptive fuzzy controller for electric spring. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 233-239. https://doi.org/10.18280/ejee.220304 | | 21 | Gupta, P., Swarnkar, P. | A new approach towards integration of multi-
frequency, multi-voltage intertied hybrid power
system | intertied hybrid power system, droop
control, interlinking power converter,
coordinated control, adaptive power sharing | 22, 3, 241-253 | https://doi.org/10.18280/ejee.220305 | Gupta, P., Swarnkar, P. (2020). A new approach towards integration of multi-frequency, multi-voltage intertied hybrid power system. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 241-253. https://doi.org/10.18280/ejee.220305 | |----|---|--|---|----------------|--------------------------------------|---| | 22 | Kerrouche, F., Tazerart, F., Taib, N. | Novel topology of a multilevel inverter dedicated to electric traction drive | multilevel inverter, seven-level inverter,
pulse width modulation, total harmonic
distortion, PMSM, electric traction drive,
field-oriented control | 22, 3, 255-263 | https://doi.org/10.18280/ejec.220306 | Kerrouche, F., Tazerart, F., Taib, N. (2020). Novel topology of a multilevel inverter dedicated to electric traction drive. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 255-263. https://doi.org/10.18280/ejee.220306 | | 23 | El Bakri, A., Boumhidi, I. | A new intelligent fault-tolerant control scheme
for wind energy systems under actuator faults | wind turbines, fault-tolerant control (FTC),
actuator fault, extreme learning machine,
multiplicative faults, additive faults | 22, 3, 265-272 | https://doi.org/10.18280/ejec.220307 | El Bakri, A., Boumhidi, I. (2020). A new intelligent fault-tolerant
control scheme for wind energy systems under actuator faults.
European Journal of Electrical Engineering, Vol. 22, No. 3, pp.
265-272. https://doi.org/10.18280/ejee.220307 | | 24 | Djilali, A.B., Yahdou, A., Bounadja, E.,
Mehedi, F. | Stopping the drift problem in the tracking of
maximum power point for photovoltaic system
by using modified variable step size incremental
conductance method | photovoltaic panel, boost converter, variable
step size incremental conductance method | 22, 3, 273-283 | https://doi.org/10.18280/ejee.220308 | Djilali, A.B., Yahdou, A., Bounadja, E., Mehedi, F. (2020). Stopping the drift problem in the tracking of maximum power point for photovaliac system by using modified variable step size incremental conductance method. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 273-286. Engineering, Vol. 22, No. 3, pp. 273-286. | | 25 | Gao, Y.H., Lu, H.L. | One wideband coplanar waveguide-fed balanced dipole antenna design | loaded antenna, resistively loaded, indoor
antenna, ultra-wideband (UWB) | 22, 3, 285-291 | https://doi.org/10.18280/ejee.220309 | Gao, Y.H., Lu, H.L. (2020). One wideband coplanar waveguide-
fed balanced dipole antenna design. European Journal of Electrical
Engineering, Vol. 22, No. 3, pp. 285-291.
https://doi.org/10.18280/ejee.220309 | | 26 | Stackler, C., Morel, F., Ladoux, p.,
Dworakowski, P. | Modelling of a 25 kV-50 Hz railway infrastructure for harmonic analysis | railway supply, impedance, skin effect, state space representation, harmonic interactions, EMC | 22, 2, 87-96 | https://doi.org/10.18280/ejee.220201 | Stackler, C., Morel, F., Ladoux, p., Dworakowski, P. (2020). Modelling of a 25 kV-50 Hz railway infrastructure for harmonic analysis. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 87-96. https://doi.org/10.18280/ejec.220201 | | 27 | Risticevic, M., Moeckel, A. | Topological approach for minimization of cogging torque in permanent magnet synchronous motors | topology, optimization, rotor, structure, on/off approach, PMSM, cogging torque | 22, 2, 97-104 | https://doi.org/10.18280/ejee.220202 | Risticevic, M., Moeckel, A. (2020). Topological approach for
minimization of cogging torque in permanent magnet
synchronous motors. European Journal of Electrical Engineering,
Vol. 22, No. 2, pp. 97-104. https://doi.org/10.18280/ejee.220202 | | 28 | Jia, C.X., Ding, H.Y., Zhang, C.J.,
Zhang, X. | Management and security analysis of
blockchain shard storage for monitoring data on
the state of smart substations | smart substations, blockchain shard storage,
security analysis, ubiquitous power Internet
of Things (UPIoT) | 22, 2, 105-110 | https://doi.org/10.18280/ejee.220203 | Jia, C.X., Ding, H.Y., Zhang, C.J., Zhang, X. (2020). Management and security analysis of blockchain shard storage for monitoring data on the state of smart substations. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 105-110. https://doi.org/10.18280/ejee.220203 | | 29 | Severiano, Y.R., Alquicira, J.A., De León
Aldaco, S.E., Santos, L.M.C. | Comparative analysis of PWM techniques in
the set: Multilevel inverter + induction motor | cascaded, modulation technique,
modulation index, multilevel inverter, total
harmonic distortion | 22, 2, 111-117 | https://doi.org/10.18280/ejee.220204 | Severiano, Y.R., Alquicira, J.A., De León Aldaco, S.E., Santos,
L.M.C. (2020). Comparative analysis of PWM techniques in the
set: Multilevel inverter + induction motor. European Journal of
Electrical Engineering, Vol. 22, No. 2, pp. 111-117.
https://doi.org/10.18280/ejee.220204 | | 30 | Gallas, H., Mseddi, A., Le Ballois, S.,
Aloui, H., Vido, L. | Modeling and control of 1.5 MW HESG-Based
wind conversion system: Advanced
aerodynamic modeling | FAST, HESG, large-scale WCS, modeling,
PI-based fuzzy logic control, robust control | 22, 2, 119-128 | https://doi.org/10.18280/ejee.220205 | Gallas, H., Mseddi, A., Le Ballois, S., Aloui, H., Vido, L. (2020). Modeling and control of 1.5 MW HESG-Based wind conversion system: Advanced aerodynamic modeling. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 119-128. https://doi.org/10.18280/ejse.220205 | | 31 | Zhang, L., Sun, Y.M., Cai, S.N., Yuan, J.N., Wang, B.Y. | Non-invasive load identification based on real-
time extraction of multiple steady-state
parameters and optimization of state coding |
non-intrusive load monitoring (NILM), load identification, steady-state parameters, affinity propagation (AP) clustering | 22, 2, 129-135 | https://doi.org/10.18280/ejee.220206 | Zhang, L., Sun, Y.M., Cai, S.N., Yuan, J.N., Wang, B.Y. (2020).
Non-invasive load identification based on real-time extraction of
multiple steady-state parameters and optimization of state coding.
European Journal of Electrical Engineering, Vol. 22, No. 2, pp.
129-135. https://doi.org/10.18280/ejee.220206 | | 32 | Mohamed, H., Abdelmadjid, B., Lotfi, B. | Improvement of direct torque control
performances for induction machine using a
robust backstepping controller and a new stator
resistance compensator | induction machine, nonlinear control,
backstepping, direct torque control, space
vector modulation stator resistance
compensator, super twisting strategy | 22, 2, 137-144 | https://doi.org/10.18280/ejee.220207 | Mohamed, H., Abdelmadjid, B., Lotfi, B. (2020). Improvement of direct torque control performances for induction machine using a robust backstepping controller and a new stator resistance compensator. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 137-144. https://doi.org/10.18280/ejee.220207 | | 33 | Fapi, C.B.N., Wira, P., Kamta, M.,
Colicchio, B. | Voltage regulation control with adaptive fuzzy logic for a stand-alone photovoltaic system | voltage control, fuzzy logic controller,
MPPT algorithms, photovoltaic panel, DC-
DC converter | 22, 2, 145-152 | https://doi.org/10.18280/ejee.220208 | Fapi, C.B.N., Wira, P., Kamta, M., Colicchio, B. (2020). Voltage regulation control with adaptive fuzzy logic for a stand-alone photovoltaic system. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 145-152.
https://doi.org/10.18280/ejee.220208 | | 34 | Zaamouche, F., Saad, S., Hamiche, L. | Discontinuous PWM applied for a three-phase
five-level CHB inverter fed by PV solar-boost
converter | cascaded inverter, boost converter,
discontinuous modulation, switching losses | 22, 2, 153-161 | https://doi.org/10.18280/ejee.220209 | Zaamouche, F., Saad, S., Hamiche, L. (2020). Discontinuous
PWM applied for a three-phase five-level CHB inverter fed by PV
solar-boost converter. European Journal of Electrical Engineering,
Vol. 22, No. 2, pp. 153-161.
https://doi.org/10.18280/ejee.220209 | | 35 | Sun, C., Liu, X.T., Yin, Z.W., Di, Y.J., Wang, Z.Y. | Whole-station visualization of secondary circuit
in smart substation based on hybrid topology | smart substation, secondary circuit,
visualization, hybrid topology | 22, 2, 163-168 | https://doi.org/10.18280/ejee.220210 | Sun, C., Liu, X.T., Yin, Z.W., Di, Y.J., Wang, Z.Y. (2020). Whole-station visualization of secondary circuit in smart substation based on hybrid topology. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 163-168. https://doi.org/10.18280/ejee.220210 | | 36 | Chelli, S.E., Nemmour, A.L., Ahmed,
M.A., Boussaid, A., Khezzar, A. | An effective approach for real-time parameters
estimation of doubly-fed induction machine
using forgetting factor RLS algorithm | doubly fed induction machines, squirrel-
cage induction machine, real-time
parameters estimation, forgetting factor
recursive least-squares algorithm (FF-RLS) | 22, 2, 169-177 | https://doi.org/10.18280/ejee.220211 | Chelli, S.E., Nemmour, A.L., Ahmed, M.A., Boussaid, A., Khezzar, A. (2020). An effective approach for real-time parameters estimation of doubly-fed induction machine using forgetting factor RLS algorithm. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 169-177. https://doi.org/10.18280/ejee.20211 | | 37 | Philip, M.A.D., Kareem, P.F.A. | Power conditioning using DVR under
symmetrical and unsymmetrical fault conditions | dynamic voltage restorer (DVR), power quality (PQ), single line to ground fault (SLG), double line to ground fault (LLG), triple line to ground fault (LLLG), total harmonics distortion (THD), voltage indices | 22, 2, 179-191 | https://doi.org/10.18280/ejee.220212 | Philip, M.A.D., Kareem, P.F.A. (2020). Power conditioning using DVR under symmetrical and unsymmetrical fault conditions. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 179-191. https://doi.org/10.18280/ejee.220212 | | 38 | Wang, D., Pang, K., Wang, W., Zhang, Y., Yao, W., Zhao, L. | Development and application of an internal
fault detection system for transformer based on
wall climbing robot | internal faults, transformer, intelligent fault
detection, socket programming | 22, 2, 193-198 | https://doi.org/10.18280/ejee.220213 | Wang, D., Pang, K., Wang, W., Zhang, Y., Yao, W., Zhao, L. (2020). Development and application of an internal fault detection system for transformer based on wall climbing robot. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 193-198. https://doi.org/10.18280/ejee.220213 | | 39 | Oscullo, J., Gallardo, C. | Small signal stability enhancement of a
multimachine power system using probabilistic
tuning PSS based in wide area monitoring data | monte Carlo, power system stabilizer,
WAMS, heuristic algorithms, probabilistic
modal analysis, small signal stability | 22, 1, 1-12 | https://doi.org/10.18280/ejee.220101 | Oscullo, J., Gallardo, C. (2020). Small signal stability enhancement of a multimachine power system using probabilistic tuning PSS based in wide area monitoring data. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 1-12. https://doi.org/10.18280/ejee.220101 | | 40 | Bahena, A.V., De León Aldaco, S.E.,
Alquicira, J.A. | Simulation for a dual inverter feeding a three-
phase open-end winding induction motor: A
comparative study of PWM techniques | dual inverter, open-end winding induction
motor, PWM techniques | 22, 1, 13-21 | https://doi.org/10.18280/ejee.220102 | Bahena, A.V., De León Aldaco, S.E., Alquicira, J.A. (2020).
Simulation for a dual inverter feeding a three-phase open-end
winding induction motor: A comparative study of PWM
techniques. European Journal of Electrical Engineering, Vol. 22,
No. 1, pp. 13-21. https://doi.org/10.18280/ejee.220102 | | 41 | Tolibjonovich, D.S., Islomovna, T.M.,
Saidulloevna, M.D. | Modeling of starting transition processes of
asynchronous motors with reduced voltage of
the supply network | reduced voltage, power quality,
asynchronous machines, MATLAB,
computer simulation, starting transients,
mechanical characteristic | 22, 1, 23-28 | https://doi.org/10.18280/ejee.220103 | Tolibjonovich, D.S., Islomovna, T.M., Saidulloevna, M.D. (2020). Modeling of starting transition processes of asynchronous motors with reduced voltage of the supply network. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 23-28. https://doi.org/10.18.280/ejee.220103 | |----|---|--|---|----------------|--------------------------------------|---| | 42 | Wang, Y.S., Gao, J., Xu, Z.W., Li, L.X. | A short-term output power prediction model of
wind power based on deep learning of grouped
time series | wind power plant, output power prediction,
short-term wind power prediction, deep
learning, new energy application | 22, 1, 29-38 | https://doi.org/10.18280/ejee.220104 | Wang, Y.S., Gao, J., Xu, Z.W., Li, L.X. (2019). A short-term output power prediction model of wind power based on deep learning of grouped time series. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 29-38.
https://doi.org/10.18280/ejee.220104 | | 43 | Chaithanakulwat, A. | Optimization of shunt active power filtering with PI control in a three-phase three-wire system | hysteresis current band, shunt active filter
power, non-linear load, total harmonic
distortion, inverter | 22, 1, 39-47 | https://doi.org/10.18280/ejee.220105 | Chaithanakulwat, A. (2020). Optimization of shunt active power filtering with PI control in a three-phase three-wire system. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 39-47. https://doi.org/10.18280/ejee.220105 | | 44 | Aguayo-Alquicira, J., León-Aldaco,
S.E.D., Calleja-Gjumlich, J.H., Claudio-S
ánchez, A. | Switching angles calculation in multilevel inverters using triangular number sequence –A THD minimization approach | total harmonic distortion, pulse modulation,
pascal triangle, triangular numbers,
switching pattern | 22, 1, 49-55 | https://doi.org/10.18280/ejee.220106 | Aguayo-Alquicira, J., León-Aldaco, S.E.D., Calleja-Gjumlich, J.H., Claudio-Sánchez, A. (2020). Swinding angles calculation in multilevel inverters using triangular number sequence – A THD minimization approach. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 49-55.
https://doi.org/10.18280/ejee.220106 | | 45 | Li, B., Fan, L., Liu, Y.X., He, J.H., Sun,
B. | Design and application of a visualized fault
joint diagnosis system for overheating fault of
gas insulated switchgear | gas-insulated switchgear (GIS), overheating
fault, X-ray, visualized fault, joint diagnosis
system | 22, 1, 57-62 | https://doi.org/10.18280/ejee.220107 | Li, B., Fan, L., Liu, Y.X., He, J.H., Sun, B. (2020). Design and application of a
visualized fault joint diagnosis system for overheating fault of gas insulated switchgear. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 57-62. https://doi.org/10.18280/ejee.220107 | | 46 | Dahbi, M., Doubabi, S., Rachid, A. | Real time implementation for a low-cost control for BLDC motor current ripple minimization | brushless DC motor, trapezoidal back-EMF
force, PI controller, current ripple, current
control | 22, 1, 63-69 | https://doi.org/10.18280/ejee.220108 | Dahbi, M., Doubabi, S., Rachid, A. (2020). Real time implementation for a low-cost control for BLDC motor current ripple minimization. European Journal of Electrical Engineering. Vol. 22, No. 1, pp. 63-69. https://doi.org/10.18280/ejee.220108 | | 47 | Kamyab, G. | Optimal feeder routing and DG placement
using Kruskal's algorithm | electrical distribution network planning,
distribution feeder routing, distributed
generators | 22, 1, 71-78 | https://doi.org/10.18280/ejee.220109 | Kamyah, G. (2020). Optimal feeder routing and DG placement
using Kruskal's algorithm. European Journal of Electrical
Engineering, Vol. 22, No. 1, pp. 71-78.
https://doi.org/10.18280/ejec.220109 | | 48 | Liu, D.D., Zhou, L., Sai, X.Y. | Vector-proportional-integral control of
inductor-capacitor-inductor active power filter
under the alpha-beta stationary coordinate
system | Inductor-capacitor-inductor (LCL) filter, active power filter (AFF), compensation for n-th order harmonic current, alpha-beta $(\alpha-\beta)$ stationary coordinate system, vector-proportional-integral (VPI) current control | 22, 1, 79-86 | https://doi.org/10.18280/ejee.220110 | Liu, D.D., Zhou, L., Sai, X.Y. (2020). Vector-proportional-
integral control of inductor-capacitor-inductor active power filter
under the alpha-beta stationary coordinate system. European
Journal of Electrical Engineering, Vol. 22, No. 1, pp. 79–86.
https://doi.org/10.18280/ejee.220110 | | 49 | El Hamdaouy, A., Salhi, I., Doubabi, S.,
Essounbouli, N., Chennani, M. | An integrated approach for modeling three-
phase micro hydropower plants | renewable energy, micro hydropower plant,
modelling, pelton turbine, synchronous
generator | 21, 6, 479-487 | https://doi.org/10.18280/ejee.210601 | El Hamdaouy, A., Salhi, I., Doubabi, S., Essounbouli, N.,
Chennani, M. (2019). An integrated approach for modeling three-
phase micro hydropower plants. European Journal of Electrical
Engineering, Vol. 21, No. 6, pp. 479-487.
https://doi.org/10.18280/ejee.210601 | | 50 | Vu, T.T.N., Teyssèdre, G., Roy, S.L.,
Anh, T.T., Trần, T.S., Nguyen, X.T.,
Nguyễn, Q.V. | The challenges and opportunities for the power transmission grid of Vietnam | energy grid, energy mix, HVDC, vietnam, renewable energy | 21, 6, 489-497 | https://doi.org/10.18280/ejee.210602 | Vu, T.T.N., Teyssèdre, G., Roy, S.L., Anh, T.T., Trân, T.S., Nguyen, X.T., Nguyèn, Q.V. (2019). The challenges and opportunities for the power transmission grid of Vietnam. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 489–497. https://doi.org/10.18280/ejee.210602 | | 51 | Oscullo, J., Gallardo, C. | Tuning and location of PSS in multimachine
power system with state feedback control for
electromechanical oscillation damping control | modal analysis, power system stability,
oscillation damping, power system control,
neural network | 21, 6, 499-507 | https://doi.org/10.18280/ejee.210603 | Oscullo, J., Gallardo, C. (2019). Tuning and location of PSS in multimachine power system with state feedback control decletomechanical oscillation damping control. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 499-507.
https://doi.org/10.18280/ejee.210603 | | 52 | Kou, Z.C., Fang, Y.J., Bleszinski, L. | A bifurcation deep neural network for electricity meter error prediction under actual conditions | Convolutional Neural Network (CNN),
autoencoder, measuring errors, electricity
meters | 21, 6, 509-514 | https://doi.org/10.18280/ejee.210604 | Kou, Z.C., Fang, Y.J., Bleszinski, L. (2019). A bifurcation deep
neural network for electricity meter error prediction under actual
conditions. European Journal of Electrical Engineering, Vol. 21,
No. 6, pp. 509-514. https://doi.org/10.18280/ejee.210604 | | 53 | Latroch, M., Khiat, M., Rahiel, D. | An IDMT overcurrent protective relay based on ADALINE | overcurrent, protective relay, ADALINE, simulation, hardware-in-the-loop, validation | 21, 6, 515-522 | https://doi.org/10.18280/ejee.210605 | Latroch, M., Khiat, M., Rahiel, D. (2019). An IDMT overcurrent protective relay based on ADALINE. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 515-522.
https://doi.org/10.18280/ejee.210605 | | 54 | Alwan, S.H. | Protection of transmission line based on the
severity index using generation rescheduling
strategy | line contingency, transmission line
overloading, differential evolution
algorithm, generation rescheduling, severity
index | 21, 6, 523-530 | https://doi.org/10.18280/ejee.210606 | Alwan, S.H. (2019). Protection of transmission line based on the severity index using generation rescheduling strategy. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 523-530. https://doi.org/10.18280/ejee.210606 | | 55 | Yang, L., Huang, T.M., Deng, L., Zeng,
Y.F., Huang, S.D. | Analysis on chaotic mechanism of direct-drive
permanent magnet synchronous generators
based on lyapunov stability theory | direct-drive permanent magnet synchronous
generator (D-PMSG), chaotic features,
affine transform, bifurcation, lyapunov
stability | 21, 6, 531-537 | https://doi.org/10.18280/ejee.210607 | Yang, L., Huang, T.M., Deng, L., Zeng, Y.F., Huang, S.D. (2019). Analysis on chaotic mechanism of direct-drive permanent magnet synchronous generators based on Japanous stability theory. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 531-537. https://doi.org/10.18280/ejee.210607 | | 56 | Chaithanakulwat, A. | Design of solar-powered aeration system for
shrimp ponds of farmers in Thailand | photovoltaic, air pump system, boost
converter, life cycle cost, control equipment,
aquaculture, hysteresis current band,
dissolved oxygen level | 21, 6, 539-546 | https://doi.org/10.18280/ejee.210608 | Chaithanakulwat, A. (2019). Design of solar-powered aeration system for shrimp ponds of farmers in Thailand. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 539-546. https://doi.org/10.18280/ejec.210608 | | 57 | Bharathi, C.R. | Design of new asymmetrical cascaded multilevel inverter with reduced number of switches | MLI, FFT, solar, wind, MCM | 21, 6, 547-552 | https://doi.org/10.18280/ejee.210609 | Bharathi, C.R. (2019). Design of new asymmetrical cascaded multilevel inverter with reduced number of switches. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 547-552. https://doi.org/10.18280/ejee.210609 | | 58 | Cucumo, M.A., Ferraro, V., Kaliakatsos,
D., Nicoletti, F. | Study of kinematic system for solar tracking of
a linear Fresnel plant to reduce end losses | linear fresnel reflectors, stepper, biaxial movement, solar tracking | 21, 5, 393-400 | https://doi.org/10.18280/ejee.210501 | Cucumo, M.A., Ferraro, V., Kaliakatsos, D., Nicoletti, F. (2019).
Study of kinematic system for solar tracking of a linear Fresnel
plant to reduce end losses. European Journal of Electrical
Engineering, Vol. 21, No. 5, pp. 393-400.
https://doi.org/10.18280/ejee.210501 | | 59 | Pankratov, E.L. | An approach to manufacture small multiplexer with dense field-effect transistors | logic gate, multiplexer, field-effect
transistors, mismatch-induced stress | 21, 5, 401-414 | https://doi.org/10.18280/ejee.210502 | Pankratov, E.L. (2019). An approach to manufacture small multiplexer with dense field-effect transistors. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 401-414.
https://doi.org/10.18280/ejee.210502 | | 60 | Wang, L., Wang, S.G., Wu, D.L., Liu,
H.H., Wang, J. | An evaluation method for harmonic emission level based on principal component regression | harmonic emission level, evaluation,
Principal Component Regression (PCR),
power system | 21, 5, 415-420 | https://doi.org/10.18280/ejee.210503 | Wang, L., Wang, S.G., Wu, D.L., Liu, H.H., Wang, J. (2019). An evaluation method for harmonic emission level based on principal component regression. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 415–420.
https://doi.org/10.18280/ejee.210503 | | _ | | T | 1 | , | | | |----|---|---|--|----------------|--------------------------------------|---| | 61 | Moussa, O., Abdessemed, R.,
Benaggoune, S., Benguesmia, H. | Sliding mode control of a grid-connected
brushless doubly fed induction generator | Brushless Doubly Fed Induction Generator
(BDFIG), vector control, active and reactive
power, back-to-back converter, sliding
mode control | 21, 5, 421-430 | https://doi.org/10.18280/ejee.210504 | Moussa, O.,
Abdessemed, R., Benaggoune, S., Benguesmia, H.
(2019). Sliding mode control of a grid-connected brushless doubly
fed induction generator. European Journal of Electrical
Engineering, Vol. 21, No. 5, pp. 421-430.
https://doi.org/10.18280/ejee.210504 | | 62 | Walid, H., Djamel, R., Sami, M., Elbaki, D.A. | Fractional order direct torque control of permanent magnet synchronous machine | Direct Torque Control (DTC), Permanent
Magnet Synchronous Machine (PMSM),
fractional order PID controller, classical PID
controller, bode's ideal transfer function,
comparison | 21, 5, 431-438 | https://doi.org/10.18280/ejee.210505 | Walid, H., Djamel, R., Sami, M., Elbaki, D.A. (2019). Fractional order direct torque control of permanent magnet synchronous machine. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 431-438. https://doi.org/10.18280/ejee.210505 | | 63 | Xiao, L.Q. | Optimization of hessian matrix in modified
newton-raphson algorithm for electrical
resistance tomography | hessian matrix, regularization factor, Ill-
Posedness, F-refinement, element
subdivision | 21, 5, 439-446 | https://doi.org/10.18280/ejee.210506 | Xiao, L.Q. (2019). Optimization of hessian matrix in modified
newton-raphson algorithm for electrical resistance tomography.
European Journal of Electrical Engineering, Vol. 21, No. 5, pp.
439-446. https://doi.org/10.18280/ejee.210506 | | 64 | Al-Hadidi, A., Duwairi, H. | Wind turbine performance under fluctuating
pressure gradient of laminar and turbulent air
flows | fluctuations, wind turbine, output power,
turbulence intensity, eddy viscosity,
boundary layer thickness | 21, 5, 447-456 | https://doi.org/10.18280/ejee.210507 | Al-Hadidi, A., Duwairi, H. (2019). Wind turbine performance under fluctuating pressure gradient of laminar and turbulent air flows. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 447-456. https://doi.org/10.18280/ejee.210507 | | 65 | Yaichi, I., Semmah, A., Wira, P. | Direct power control of a wind turbine based on doubly fed induction generator | Pulse Width Modulation (PWM), Doubly
Fed Induction Generator (DFIG), Field
Oriented Control (FOC), Direct Power
Control (DPC) | 21, 5, 457-464 | https://doi.org/10.18280/ejee.210508 | Yaichi, I., Semmah, A., Wira, P. (2019). Direct power control of a wind turbine based on doubly fed induction generator. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 457-464. https://doi.org/10.18280/ejee.210508 | | 66 | Zhang, X., Lu, W.R., Miao, Z.C., Jiang, Z.Y., Xu, W.B. | Iterative learning synchronized control of multi-
leaf collimator based on cross-coupled control | Iterative learning control, synchronized control, cross-coupled control, multi-leaf collimator, conformal radiotherapy | 21, 5, 465-470 | https://doi.org/10.18280/ejee.210509 | Zhang, X., Lu, W.R., Miao, Z.C., Jiang, Z.Y., Xu, W.B. (2019).
Iterative learning synchronized control of multi-leaf collimator
based on cross-coupled control. European Journal of Electrical
Engineering, Vol. 21, No. 5, pp. 465-470.
https://doi.org/10.18280/ejee.210509 | | 67 | Ryad, A.K., Atallah, A.M., Zekry, A. | Photovoltaic array reconfiguration under partial
shading based on integer link matrix and
harmony search | Maximum Power Point Tracking (MPPT),
Global Maximum Power Point (MPP),
metaheuristic techniques, binary link
matrix, irradiance mismatch index | 21, 5, 471-477 | https://doi.org/10.18280/ejee.210510 | Ryad, A.K., Atallah, A.M., Zekry, A. (2019). Photovoltaic array reconfiguration under partial shading based on integer link matrix and harmony search. European Journal of Electrical Engineering. Vol. 21, No. 5, pp. 471-477. https://doi.org/10.18280/ejee.210510 | | 68 | Saleh, S., Farag, A.S. | Evaluation of the control strategy performance
for isolated variable-speed wind turbine using
different wind speed models at different load
cases under balanced/unbalanced excitation | Variable Speed Wind Turbine (VSWT),
Self-Excited Induction Generator (SEIG),
Maximum Power Point Tracking (MPPT),
torque control, pitch angle control, realstic
wind model, random wind model,
balanced/unbalanced excitation | 21, 4, 341-353 | https://doi.org/10.18280/ejee.210401 | Saleh, S., Farag, A.S. (2019). Evaluation of the control strategy performance for isolated variable-speed wind turbine using different wind speed models at different load cases under balanced/unbalanced excitation. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 341-353. https://doi.org/10.18280/ejee.210401 | | 69 | Hardiantono, D., Mangera, P. | Comparison using express feeder and capacitor
bank allocation to corrective voltage level on
primary distribution feeder | power loss, power flow, ETAP, drop
voltage, power flow | 21, 4, 355-359 | https://doi.org/10.18280/ejee.210402 | Hardiantono, D., Mangera, P. (2019). Comparison using express feeder and capacitor bank allocation to corrective voltage level on primary distribution feeder. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 355-359.
https://doi.org/10.18280/ejee.210402 | | 70 | Bandar, L.D.N., Mozaffarilegha, M. | Decentralized power management of a hybrid
microgrid consisting of solar panel and storage
device | energy management system, micro grid,
multi agent system, optimization, genetic
algorithm | 21, 4, 361-365 | https://doi.org/10.18280/ejee.210403 | Bandar, L.D.N., Mozaffarilegha, M. (2019). Decentralized power management of a hybrid microgrid consisting of solar panel and storage device. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 361-365. https://doi.org/10.18280/ejee.210403 | | 71 | (2019). Comparison of different | Comparison of different multilevel voltage
source inverter topologies on induction motor
energy quality | Modular Multilevel Voltage Source Inverter
(MMVSI), Neutral Point Clamped Voltage
Source Inverter (NPCVSI), Three-Phase
Induction Motor (3-IM), Phase Disposition
Pulse Width Modulation (PD-PWM) | 21, 4, 367-372 | https://doi.org/10.18280/ejee.210404 | Yahiaoui, A., Iffouzar, K., Himour, K., Ghedamsi, K. (2019). Comparison of different multilevel voltage source inverter topologies on induction motor energy quality. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 367-372. https://doi.org/10.18280/ejee.210404 | | 72 | Jayaraju, G., Rao, G.S. | A new optimized ANN algorithm based single
phase grid connected PV-wind system using
single switch high gain DC-DC converter | Distributed Generation, PV System, PMSG,
Luo Converter, Fuzzy MPPT Algorithm,
ANN Algorithm | 21, 4, 373-381 | https://doi.org/10.18280/ejee.210405 | Jayaraju, G., Rao, G.S. (2019). A new optimized ANN algorithm based single phase grid connected PV-wind system using single switch high gain DC-DC converter. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 373-381.
https://doi.org/10.18280/ejee.210405 | | 73 | Chen, L., Han, W., Huang, Y.H., Cao, X., Xu, Z.K. | Reconfiguration of partially shaded photovoltaic arrays | Partial Shading, Photovoltaic (PV) Array,
Reconfiguration, Fruit Fly Optimization
Algorithm (FOA) | 21, 4, 383-392 | https://doi.org/10.18280/ejee.210406 | Chen, L., Han, W., Huang, Y.H., Cao, X., Xu, Z.K. (2019).
Reconfiguration of partially shaded photovoltaic arrays. European
Journal of Electrical Engineering, Vol. 21, No. 4, pp. 383-392.
https://doi.org/10.18280/ejee.210406 | | 74 | Mandi, B., Menni, Y., Chamkha, A.J.,
Lorenzini, G., Kaid, N., Bibi-Triki, N.,
Bensafi, M., Ameur, H., Sahel, D. | Effect of various physical parameters on the productivity of the hybrid distiller - in the time of distillation extension at night | hybrid distillation, modeling, hybrid
coupling with a cylindro parabolic
concentrator, photovoltaic generator,
thermal conversion, electrical conversion | 21, 3, 265-271 | https://doi.org/10.18280/ejee.210301 | Mandi, B., Menni, Y., Chamkha, A.J., Lorenzini, G., Kaid, N.,
Bibi-Tiki, N., Bensafi, M., Ameur, H., Sahel, D. (2019). Effect of
various physical parameters on the productivity of the hybrid
distiller - in the time of distillation extension at night. European
Journal of Electrical Engineering. Vol. 21, No. 3, pp. 265-271.
https://doi.org/10.18280/ejec.210301 | | 75 | Krčmařík, D., Petrů, M., Moezzi, R. | Innovative IoT sensing and communication unit in agriculture | internet of thing, smart agriculture,
tensometer, precision agriculture, GSM, big
data | 21, 3, 273-278 | https://doi.org/10.18280/ejee.210302 | Krémařík, D., Petrů, M., Moezzi, R. (2019). Innovatíve IoT
sensing and communication unit in agriculture. European Journal
of Electrical Engineering, Vol. 21, No. 3, pp. 273-278.
https://doi.org/10.18280/ejee.210302 | | 76 | Zhang, T.R., Xu, Y.J., Shi, L. | A submodule topology for modular multilevel
converter with self-cleaning ability of direct
current fault | Modular Multilevel Converter (MMC),
Similarity Half-Bridge Submodule
(SHBSM), Self-Cleaning, High-Voltage
Direct Current (HVDC) Transmission | 21, 3, 279-284 | https://doi.org/10.18280/ejee.210303 | Zhang, T.R., Xu, Y.J., Shi, L. (2019). A submodule topology for
modular multilevel converter with self-cleaning ability of direct
current fault. European Journal of Electrical Engineering, Vol. 21,
No. 3, pp. 279-284. https://doi.org/10.18280/ejee.210303 | | 77 | Sari-Ali, I., Benyoucef, B., Chikh-Bled,
B., Menni, Y., Chamkha, A.J., Lorenzini,
G. | Study of models using one or two exponentials to simulate the characteristic current-voltage of silicon solar cells | solar cells with high efficiency and low cost,
solar cell efficiency, characteristic current-
voltage of solar cell, production of
electricity, silicon | 21, 3, 285-289 | https://doi.org/10.18280/ejee.210304 | Sari-Ali, L, Benyoucef, B., Chikh-Bled,
B., Menni, Y., Chamkha,
A.J., Lorenzini, G. (2019). Study of models using one or two
exponentials to simulate the characteristic current-voltage of
silicon solar cells. European Journal of Electrical Engineering.
Vol. 21, No. 3, pp. 285–289.
https://doi.org/10.18280/ejec.210304 | | 78 | Chen, Q., Lv, G., Zhang, R.L., Tang, H.D., Luo, Z.Y. | Optimal transmission of high-frequency voltage signals under remote control | transmission lines, transmission signals,
optimization, high-frequency voltage,
suppression | 21, 3, 291-296 | https://doi.org/10.18280/ejee.210305 | Chen, Q., Lv, G., Zhang, R.L., Tang, H.D., Luo, Z.Y. (2019). Optimal transmission of high-frequency voltage signals under remote control. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 291-296. https://doi.org/10.18280/ejee.210305 | | 79 | Khan, M.J. | Artificial intelligence based maximum power point tracking controller for fuel cell system | PEMFC, Dc-Dc Power Converter, MPPT
Methods, FL Controller | 21, 3, 297-302 | https://doi.org/10.18280/ejee.210306 | Khan, M.J. (2019). Artificial intelligence based maximum power point tracking controller for fuel cell system. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 297-302.
https://doi.org/10.18280/ejee.210306 | | 80 | Shen, Z.J., Wang, R.G. | Design and application of an improved least
mean square algorithm for adaptive filtering | Adaptive Filtering, Least Mean Square
(LMS) algorithm, variable step size, noise
cancelation | 21, 3, 303-307 | https://doi.org/10.18280/ejee.210307 | Shen, Z.J., Wang, R.G. (2019). Design and application of an improved least mean square algorithm for adaptive filtering.
European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 303-307. https://doi.org/10.18280/ejee.210307 | | _ | | • | | | | | | 81 | Saleh, S.M., Farag, A.S. | Review fixed-speed wind turbine control strategies for direct grid connection | Fixed Speed Wind Turbine (FSWT), gear
ration control, excitation capacitor control,
realistic wind model, squirrel cage generator | 21, 3, 309-315 | https://doi.org/10.18280/ejee.210308 | Saleh, S.M., Farag, A.S. (2019). Review fixed-speed wind turbine control strategies for direct grid connection. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 309-315.
https://doi.org/10.18280/ejee.210308 | |-----|---|---|---|----------------|--------------------------------------|--| | 82 | Chen, L., Han, W., Huang, Y.H., Cao, X. | Online fault diagnosis for photovoltaic modules based on probabilistic neural network | Photovoltaic (PV) Modules, Fault
Diagnosis, Probabilistic Neural Network
(PNN), backpropagation neural network
(BPNN) | 21, 3, 317-325 | https://doi.org/10.18280/ejee.210309 | Chen, L., Han, W., Huang, Y.H., Cao, X. (2019). Online fault diagnosis for photovoltaic modules based on probabilistic neural network. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 317-325. https://doi.org/10.18280/ejee.210309 | | 83 | Manukonda, D., Gorantla, S.R. | Design and comparison of standalone bladeless
wind solar hybrid system with the conventional
standalone wind solar hybrid system | Bladeless Standalone Wind Hybrid System,
Conventional Hybrid System, Bladeless
Wind Turbine, Vortex Vibrations | 21, 3, 327-332 | https://doi.org/10.18280/ejee.210310 | Manukonda, D., Gorantla, S.R. (2019). Design and comparison of standalone bladeless wind solar hybrid system with the conventional standalone wind solar hybrid system. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 327-332. https://doi.org/10.18280/ejee.210310 | | 84 | Medjmadj, S. | Fault tolerant control of pmsm drive using luenberger and adaptive back-EMF observers | PMSM, Fault Tolerant Control (FTC),
mechanical sensor failure, voting algorithm,
sensorless control | 21, 3, 333-339 | https://doi.org/10.18280/ejce.210311 | Medjmadj, S. (2019). Fault tolerant control of pmsm drive using laenberger and adaptive Back-EMF observers. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 333-339.
https://doi.org/10.18280/ejee.210311 | | 85 | Herizi, O., Barkat, S. | Backstepping control associated to modified
space vector modulation for quasi z-source
inverter fed by a PEMFC | quasi z-source inverter, modified space
vector modulation, backstepping control,
fuel cell | 21, 2, 125-132 | https://doi.org/10.18280/ejee.210201 | Herizi, O., Barkat, S. (2019). Backstepping control associated to modified space vector modulation for quasi z-source inverter fed by a PEMIC. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 125-132. https://doi.org/10.18280/ejee.210201 | | 86 | Lin, G.W., Wang, X.L. | Multi-objective optimization of combined cooling, heating and power system | multi-objective optimization, Combined
Cooling, Heating and Power (CCHP)
System, Artificial Bee Colony (ABC)
Algorithm | 21, 2, 133-138 | https://doi.org/10.18280/ejee.210202 | Lin, G.W., Wang, X.L. (2019). Multi-objective optimization of combined cooling, heating and power system. European Journal of Electrical Engineering, Vol. 21, No. 2, pp.133-138.
https://doi.org/10.18280/ejee.210202 | | 87 | Rayalla, R., Ambati, R.S., Gara, B.U.B. | An improved fractional filter fractional IMC-
PID controller design and analysis for enhanced
performance of non-integer order plus time
delay processes | internal model control, robustness, fragility, fractional imc filter structure, uncertainty | 21, 2, 139-147 | https://doi.org/10.18280/ejee.210203 | Rayalla, R., Ambati, R.S., Gara, B.U.B. (2019). An improved fractional filter fractional IMC-PID controller design and analysis for enhanced performance of non-integer order plus time delay processes. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 139-147. https://doi.org/10.18280/ejee.210203 | | 88 | Griche, I., Messalti, S., Saoudi, K.,
Touafek, M.Y. | A new adaptive neuro-fuzzy inference system
(ANFIS) and pi controller to voltage regulation
of power system equipped by wind turbine | power network, Distributed Generator (DG), simulation, intelligent controller | 21, 2, 149-155 | https://doi.org/10.18280/ejee.210204 | Griche, I., Messalti, S., Saoudi, K., Touafek, M.Y. (2019). A new adaptive neuro-fuzzy inference system (ANFIS) and PI controller to voltage regulation of power system equipped by wind turbine. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 149-155. https://doi.org/10.18280/ejee.210204 | | 89 | Wang, X.D., Zhu, J. | Research and applications of high-voltage pulse discharge crushing | High-Voltage Pulse Discharge (HVPD),
crushing, engineering applications, fuse
explosion method, electrohydraulic effect
method | 21, 2, 157-163 | https://doi.org/10.18280/ejee.210205 | Wang, X.D., Zhu, J. (2019). Research and applications of high-
voltage pulse discharge crushing. European Journal of Electrical
Engineering, Vol. 21, No. 2, pp. 157-163.
https://doi.org/10.18280/ejee.210205 | | 90 | Ghaitaoui, T., Benatiallah, A., Khachab,
H., Sahli, Y., Koussa, K. | Neural network modeling and experimental
evaluation of organic solar panel performance
in algerian sahara | organic solar cells, artificial neural network,
electrical parameters, voltage-current
characteristic, PV panel | 21, 2, 165-169 | https://doi.org/10.18280/ejee.210206 | Ghaitaoui, T., Benatiallah, A., Khachab, H., Sahli, Y., Koussa, K. (2019). Neural network modeling and experimental evaluation of organic solar panel performance in algerian sahara. European Journal of Electrical Engineering. Vol. 21, No. 2, pp. 165-169. https://doi.org/10.18280/ejee.210206 | | 91 | Gannoun, R., Hassen, W., Pérez, A.T.,
Borjini, M.N. | Numerical study of electro-convection and electro-thermo-convection in solar chimney geometry | charge injection, electro-convection, electro-
thermo-convection, solar chimney
geometry, numerical method | 21, 2, 171-177 | https://doi.org/10.18280/ejee.210207 | Gannoun, R., Hassen, W., Pérez, A.T., Borjini, M.N. (2019). Numerical study of electro-convection and electro-thermo- convection in solar chimney geometry. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 171-177. https://doi.org/10.18280/ejee.210207 | | 92 | Liu, L., Wang, S.T. | Improving low voltage ride-through with
STATCOM and sdbr for wind turbine with
squirrel-cage induction generator | low voltage ride-through, series dynamic
breaking resistor, STATCOM, squirrel-cage
induction generator | 21, 2, 179-187 | https://doi.org/10.18280/ejee.210208 | Liu, L., Wang, S.T. (2019). Improving low voltage ride-through with STATCOM and SDBR for wind turbine with squirrel-cage induction generator. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 179-187. https://doi.org/10.18280/ejee.210208 | | 93 | Lenin, K. | True power loss reduction by chemical reaction optimization algorithm | optimal reactive power, transmission loss, chemical reaction | 21, 2, 189-192 | https://doi.org/10.18280/ejee.210209 | Lenin, K. (2019). True power loss reduction by chemical reaction optimization algorithm. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 189-192.
https://doi.org/10.18280/ejee.210209 | | 94 | Wu, D.X., Fan,
W.P., Xue, F., Jiang, G.S. | A cooperative spectrum sensing algorithm to
minimize the sensing overhead of cognitive
radio system | Cognitive Radio (CR), spectrum sensing,
sensing overhead, sensing duration,
cognitive users | 21, 2, 193-197 | https://doi.org/10.18280/ejee.210210 | Wu, D.X., Fan, W.P., Xue, F., Jiang, G.S. (2019). A cooperative spectrum sensing algorithm to minimize the sensing overhead of cognitive radio system. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 193-197. https://doi.org/10.18280/ejee.210210 | | 95 | Jeyasudha, S., Geethalakshmi, B. | A novel switched capacitor boost derived
multilevel hybrid converter modeling and
analysis | boost converter, boost derived hybrid
converter, multilevel inverter, switched
capacitor converter, PI controller | 21, 2, 199-206 | https://doi.org/10.18280/ejee.210211 | Jeyasudha, S., Geethalakshmi, B. (2019). A novel switched capacitor boost derived multilevel hybrid converter modeling and analysis. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 199-206. https://doi.org/10.18280/ejee.210211 | | 96 | Bapat, S.M., Gokak, G.D. | Exergetic evaluation and optimization of combined heat and power (CHP) plant of 20.7 mw capacities under varying load conditions: a case study | bagasse, biomass combined heat and power, cogeneration, exergy analysis, sugar | 21, 2, 207-215 | https://doi.org/10.18280/ejee.210212 | Bapat, S.M., Gokak, G.D. (2019). Exergetic evaluation and optimization of combined heat and power (CHP) plant of 20.7 MW capacities under varying load conditions: A case study. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 207-215. https://doi.org/10.18280/ejee.210212 | | 97 | Zhang, Y. | Energy efficiency management and route optimization for wireless sensor network under the ubiquitous power internet of things | Ubiquitous Power Internet of Things
(UPIoT), energy consumption model, node
quality, route optimization | 21, 2, 217-222 | https://doi.org/10.18280/ejee.210213 | Zhang, Y. (2019). Energy efficiency management and route optimization for wireless sensor network under the ubiquitous power internet of things. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 217-222.
https://doi.org/10.18280/ejee.210213 | | 98 | Parenden, D., Hariyanto. | Simulation of photovoltaic concentration with fresnel lens using simulink matlab | photovoltaic, solar irradiation, spectrum
light, fresnle lens, output daya, efisiensi | 21, 2, 223-227 | https://doi.org/10.18280/ejee.210214 | Parenden, D., Hariyanto. (2019). Simulation of photovoltaic
concentration with Fresnel lens using Simulink MATLAB.
European Journal of Electrical Engineering, Vol. 21, No. 2, pp.
223-227. https://doi.org/10.18280/ejee.210214 | | 99 | Asma, T., Mohamed, T. | A comparative study between a perturb and
observe based passivity and a classical perturb
and observe based PI for the thermoelectric
generator | thermoelectric generator, MPPT, DC/DC
converter, passivity based control, euler
lagrange | 21, 2, 229-234 | https://doi.org/10.18280/ejee.210215 | Asma, T., Mohamed, T. (2019). A comparative study between a perturb and observe based passivity and a classical perturb and observe based PI for the thermoelectric generator. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 229-234. https://doi.org/10.18280/ejee.210215 | | 100 | Zhang, J., Liu, B.X., Wu, Y.Q., Yi, H.C. | Numerical simulation and anomalies qualification based on ground-well transient electromagnetics method | Ground-Well Transient Electromagnetics
(G-W TEM), linear conductor, observation
mode, curve feature | 21, 2, 235-240 | https://doi.org/10.18280/ejee.210216 | Zhang, J., Liu, B.X., Wu, Y.Q., Yi, H.C. (2019). Numerical simulation and anomalies qualification based on ground-well transient electromagnetics method. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 235-240.
https://doi.org/10.18280/ejee.210216 | | 101 | Berkani, A., Negadi, K., Allaoui, T.,
Mezouar, A., Denai, M. | Imposed switching frequency direct torque control of induction machine using five level flying capacitors inverter | DTC, control of switching frequency, induction motor, multi-level inverter and flying capacitors inverter | 21, 2, 241-248 | https://doi.org/10.18280/ejee.210217 | Berkani, A., Negadi, K., Allaoui, T., Mezouar, A., Denai, M. (2019). Imposed switching frequency direct torque control of induction machine using five level flying capacitors inverter.
European Journal of Electrical Engineering. Vol. 21, No. 2, pp. 241-248. https://doi.org/10.18280/ejec.210217 | |-----|---|--|--|----------------|--------------------------------------|--| | 102 | Xiao, H.Y., Li, R. | A farah charging system based on constant power supply | farah capacitor, Proportional-Integral-
Derivative (PID) Control, Pulse-Width
Modulation (PWM), constant power supply | 21, 2, 249-254 | https://doi.org/10.18280/ejec.210218 | Xiao, H.Y., Li, R. (2019). A Farah charging system based on constant power supply. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 249-254.
https://doi.org/10.18280/ejee.210218 | | 103 | Fathabadi, F.R., Molavi, A. | Black-box identification and validation of an induction motor in an experimental application | Slip Controller, ARMAX, PRBS, Dq
Voltages, Drive, FOC, Identification
Algorithm | 21, 2, 55-263 | https://doi.org/10.18280/ejec.210219 | Fathabadi, F.R., Molavi, A. (2019). Black-box identification and validation of an induction motor in an experimental application.
European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 255-263. https://doi.org/10.18280/ejee.210219 | | 104 | Chikhi, N., Bendaoud, A. | Evaluation of conducted disturbances generated
by the chopper-rectifier association propagating
to the electrical network | nawel chikhi, abdelber bendaoud | 21, 1, 1-6 | https://doi.org/10.18280/ejee.210101 | Chikhi, N., Bendaoud, A. (2019). Evaluation of conducted disturbances generated by the chopper-rectifier association propagating to the electrical network, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 1-6.
https://doi.org/10.18280/ejee.210101 | | 105 | Nuthalapati, B., Sinha, U.K. | Location of downed or broken power line fault not touching the ground | Power Line Communication (PLC), PLG
(Power Line Guardian), High Impedance
Faults (HIF's), fault current | 21, 1, 7-10 | https://doi.org/10.18280/ejee.210102 | Nuthalapati, B., Sinha, U.K. (2019). Location of downed or
broken power line fault not touching the ground, European
Journal of Electrical Engineering, Vol. 21, No. 1, pp. 7-10.
https://doi.org/10.18280/ejee.210102 | | 106 | Huang, S., Cheng, H., Li, Z.D., Zhang,
H.Z., Li, J.L., Guo, J.Y. | A novel invulnerability index for invulnerability assessment of complex power network | complex power network, invulnerability
assessment, invulnerability value, source-
load pair, complex network theory | 21, 1, 11-17 | https://doi.org/10.18280/ejee.210103 | Huang, S., Cheng, H., Li, Z.D., Zhang, H.Z., Li, J.L., Guo, J.Y. (2019). A novel invulnerability index for invulnerability assessment of complex power network, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 11-17.
https://doi.org/10.18280/ejee.210103 | | 107 | Ilhem, D., Walid, H., Djamel, R. | Sizing and control of a typical 6/4 switching reluctance motor | Switched Reluctance Motor 6/4, Direct
Torque Control (DTC), Field-Oriented
Control (FOC), Fractional-Order PlaDb
Controller | 21, 1, 19-25 | https://doi.org/10.18280/ejee.210104 | Ilhem, D., Walid, H., Djamel, R. (2019). Sizing and control of a typical 6/4 switching reluctance motor, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 19-25. https://doi.org/10.18280/ejee.210104 | | 108 | Al-Qallab, B., Duwairi, H. | The effects of fluctuating air streams on the output of a wind turbine | boundary layer, electricity production,
surface topography, velocity fluctuations,
wind energy | 21, 1, 27-34 | https://doi.org/10.18280/ejee.210105 | Al-Qallab, B., Duwairi, H. (2019). The effects of fluctuating air streams on the output of a wind turbine, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 27-34. https://doi.org/10.18280/ejee.210105 | | 109 | Yin, S. | Estimation of rotor position in brushless direct
current motor by memory attenuated extended
kalman filter | Brushless Direct Current (DC) motor,
kalman filter, sensorless controller,
commutation | 21, 1, 35-42 | https://doi.org/10.18280/ejee.210106 | Yin, S. (2019). Estimation of rotor position in brushless direct current motor by memory attenuated extended Kalman filter, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 35-42. https://doi.org/10.18280/ejee.210106 | | 110 | Mourad, T., Rached, G., Hatem, E. | Modeling of new architecture of photovoltaic
generator based on a-si: H/c-si materials | tandem solar cells, photovoltaic module, concentrator, focus, shading | 21, 1, 43-47 | https://doi.org/10.18280/ejee.210107 | Mourad, T., Rached, G., Hatem, E. (2019). Modeling of new architecture of photovoltaic generator based on
a-Si: H/c-Si materials, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 43-47. https://doi.org/10.18280/ejee.210107 | | 111 | Ayad, A.N.E.I., Krika, W., Boudjella, H.,
Benhamida, F., Horch, A. | Simulation of the electromagnetic field in the vicinity of the overhead power transmission line | electromagnetic pollution, power line,
transient, finite element method, emission | 21, 1, 49-53 | https://doi.org/10.18280/ejee.210108 | Ayad, A.N.E.I., Krika, W., Boudjella, H., Benhamida, F., Horch, A. (2019). Simulation of the electromagnetic field in the vicinity of the overhead power transmission line, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 49-53.
https://doi.org/10.18280/ejee.210108 | | 112 | Zheng, J.H., Wang, D.Y., Geng, Z.X. | Coal mine video data detail enhancement
algorithm based on 10 norm and low rank
analysis | coal mine monitoring video, L0 norm, low
rank analysis, enhancement algorithm | 21, 1, 55-60 | https://doi.org/10.18280/ejee.210109 | Zheng, J.H., Wang, D.Y., Geng, Z.X. (2019). Coal mine video data detail enhancement algorithm based on 10 norm and low rank analysis. European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 55-60. https://doi.org/10.18280/ejee.210109 | | 113 | Lokriti, A., Salhi, I., Doubabi, S. | DSPace based implementation of DRFOC using hysteresis stator flux controllers for IM | Induction Motor, Direct Rotor Field
Oriented Control, Flux Distortion, Reduced
Switching Table | 21, 1, 61-66 | https://doi.org/10.18280/ejee.210110 | Lokriti, A., Salhi, I., Doubabi, S. (2019). DSPace based implementation of DRFOC using hysteresis stator flux controllers for IM, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 61-66. https://doi.org/10.18280/ejee.210110 | | 114 | Irshad, T., Ishak, D., Baloch, M.H. | Comparative analysis of rectangular and
circular four-resonator coil system for wireless
power transfer using magnetic resonance
coupling technique | wireless power transfer, mutual inductance,
coupling coefficient, power transmission
efficiency, circular coil, rectangular coil | 21, 1, 67-73 | https://doi.org/10.18280/ejee.210111 | Irshad, T., Ishak, D., Baloch, M.H. (2019). Comparative analysis
of rectangular and circular four-resonator coil system for wireless
power transfer using magnetic resonance coupling technique,
European Journal of Electrical Engineering, Vol. 21, No. 1, pp.
67-73. https://doi.org/10.18280/ejee.210111 | | 115 | Hu, W., Li, H.H., Hu, Y.W., Yao, W.H. | A blockchain-based spot market transaction
model for energy power supply and demand
network | spot power market, Intraday Time-Of-Use
(TOU) power price, blockchain, energy
power supply and demand network
(EPSDN), multi-objective search algorithm | 21, 1, 75-83 | https://doi.org/10.18280/ejee.210112 | Hu, W., Li, H.H., Hu, Y.W., Yao, W.H. (2019). A blockchain-
based spot market transaction model for energy power supply and
demand network, European Journal of Electrical Engineering,
Vol. 21, No. 1, pp. 75-83. https://doi.org/10.18280/ejee.210112 | | 116 | Bendaikha, A., Saad, S., Abdou, A.,
Defdaf, M., Laamari, Y. | A study of SVM-DTC and conventional DTC for induction motors drive fed by five-level inverter | space vector algorithm, switching
frequency, harmonic distortion, stator flux,
diode clamped inverter, reference voltages,
pi controllers, torque fluctuations, duration
of the commutations | 21, 1, 85-91 | https://doi.org/10.18280/ejee.210113 | Bendaikha, A., Saad, S., Abdou, A., Defdaf, M., Laamari, Y. (2019). A Study of SVM-DTC and conventional DTC for induction motors drive fed by five-level inverter, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 85-91. https://doi.org/10.18280/ejee.210113 | | 117 | Maouedj, R., Benmedjahed, M., Saba, D.,
Mamemri, A., Barbaoui, B., Bezari S. | Experimental analysis of a stand-alone wind-
photovoltaic hybrid system in the sahara desert | hybrid system, wind, photovoltaic, battery, load | 21, 1, 93-97 | https://doi.org/10.18280/ejec.210114 | Maouedj, R., Benmedjahed, M., Saba, D., Mamemri, A.,
Barbaoui, B., Bezari S. (2019). Experimental analysis of a stand-
alone wind-photovoltaic hybrid system in the Sahara desert,
European Journal of Electrical Engineering, Vol. 21, No. 1, pp.
93-97. https://doi.org/10.18280/cjec.210114 | | 118 | Zhang, T.F., Li, Z., Chen, Z.H., Jing, X. | Design and performance verification of an optimized multi-agent system | Multi-Agent System (MAS), socket-based connection, optimized serial line internet protocol (O-SLIP), network saturation, agent load capacity, performance analysis | 21, 1, 99-105 | https://doi.org/10.18280/ejec.210115 | Zhang, T.F., Li, Z., Chen, Z.H., Jing, X. (2019). Design and performance verification of an optimized multi-agent system, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 99-105. https://doi.org/10.18280/ejee.210115 | | 119 | Zhang, T.Y., Li, Y.D. | A simplified pulse width modulation algorithm
for model prediction of cascade static
synchronous compensator | Cascade Static Synchronous Compensator
(STATCOM), Reactive Power
Compensation (RPC), Pulse Width
Modulation (PWM), Virtual Flux (VF), DC-
side voltage balancing | 21, 1, 107-113 | https://doi.org/10.18280/ejce.210116 | Zhang, T.Y., Li, Y.D. (2019). A Simplified Pulse Width
Modulation Algorithm for Model Prediction of Cascade Static
Synchronous Compensator, European Journal of Electrical
Engineering, Vol. 21, No. 1, pp. 107-113.
https://doi.org/10.18280/ejee.210116 | | 120 | Samra, C., Djallel, Z., Sahraoui, K., Driss,
S., Ahmed, B. | Cascading heat transformation process for power generation | absorption, adsorption, joule cycle, organic
rankine cycle, power generation, heat
transformer, temperature, solar collector,
working fluid | 21, 1, 115-123 | https://doi.org/10.18280/ejee.210117 | Samra, C., Djallel, Z., Sahraoui, K., Driss, S., Ahmed, B. (2019). Cascading Heat Transformation Process for Power Generation, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 115-123. https://doi.org/10.18280/ejee.210117 | | Г | | | | | | Di Ralla G. Sanianza A. Vasta S. Lamberte G. (2010) | |-----|--|---|--|------------------|--|---| | 121 | Di Bella, G., Sapienza, A., Vasta, S.,
Lombardo, G. | Design of a geothermal plant to heat a
waterpark swimming pool: Case study of
tramutola (Basilicata, Italy) | geothermal, heating, design | 20, 5-6, 539-557 | https://doi.org/10.3166/EJEE.20.539-557 | Di Bella, G., Sapienza, A., Vasta, S., Lombardo, G. (2018). Design of a geothermal plant to heat a waterpark swimming pool: Case study of tramutola (Basilicata, Italy). European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 539-557. https://doi.org/10.3166/EJEE.20.539-557 | | 122 | Rao, D.S.N.M., Kumar, N. | Comparable investigation on TLBO algorithm for power system optimization | Valve Point Loading Effects, Non-Convex,
T & L based Optimization, PSO, DE,
HSA,Economic Dispatch | 20, 5-6, 559-571 | https://doi.org/10.3166/EJEE.20.559-571 | Rao, D.S.N.M., Kumar, N. (2018). Comparable investigation on
TLBO algorithm for power system optimization. European
Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 559-571.
https://doi.org/10.3166/EJEE.20.559-571 | | 123 | Shao, Z.H., Zhong, Z.X., Lin, W.Z. | Reliability analysis and matpower simulation of IEEE14 node based on mixed entropy measure | | 20, 5-6, 573-588 | https://doi.org/10.3166/EJEE.20.573-588 | Shao, Z.H., Zhong, Z.X., Lin, W.Z. (2018). Reliability analysis and matpower simulation of IEEE14 node based on mixed entropy measure. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 573-588. https://doi.org/
10.3166/EJEE.20.573-588 | | 124 | Manukonda, D., Gorantla, S.R. | Design and comparison of MPPT based oscillatory wind turbine with conventional wind turbine | Oscillatory Wind Turbine, Perturb and
Observe Maximum Power Point Tracking
(MPPT), Fuzzy PID Controller,
Conventional Wind Turbine | 20, 5-6, 589-600 | https://doi.org/10.3166/EJEE.20.589-600 | Manukonda, D., Gorantla, S.R. (2018). Design and comparison of MPPT based oscillatory wind turbine with conventional wind turbine. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 589-600. https://doi.org/10.3166/ EJEE.20.589-600 | | 125 | Lenin, K. | Real power loss diminution by camelopard optimization algorithm | Optimal Reactive Power, Transmission
Loss, Camelopard Optimization Algorithm | 20, 5-6, 601-616 | https://doi.org/10.3166/EJEE.20.601-616 | Lenin, K. (2018). Real power loss diminution by camelopard optimization algorithm. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 601-616.
https://doi.org/10.3166/EJEE.20.601-616 | | 126 | Katuril, R., Gorantla, S. | Performance analysis of hybrid controller for
automatic switching between energy sources of
hybrid energy storage system | Proportional-Derivative Controller, Math
Function-Based Controller, Ultracapacitor,
Battery | 20, 5-6, 617-630 | https://doi.org/10.3166/ EJEE.20.617-630 | Katuril, R., Gorantia, S. (2018). Performance
analysis of hybrid controller for automatic switching between energy sources of hybrid energy storage system. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 617-630.
https://doi.org/10.3166/EJEE.20.617-630 | | 127 | Liu, Z., Liang, X., Huang, M., Ning, T. | Optimization of over-modulation technology for traction inverters | Switching Frequency, Over-Modulation,
Harmonic Content, Modulation Factor | 20, 5-6, 631-643 | https://doi.org/10.3166/EJEE.20.631-643 | Liu, Z., Liang, X., Huang, M., Ning, T. (2018). Optimization of
over-modulation technology for traction inverters. European
Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 631-643.
https://doi.org/10.3166/EJEE.20.631-643 | | 128 | Abdelghafour, H., Abderrahmen, B.,
Samir, Z., Riyadh, R. | Backstepping control of a doubly-fed induction machine based on fuzzy controller | Doubly-Fed Induction Machine (DFIM),
Backstepping Control, Theory of Lyapunov,
Stator Flux Orientation, Fuzzy Logic,
Hybrid Control, Robustness | 20, 5-6, 645-657 | https://doi.org/10.3166/EJEE.20.645-657 | Abdelghafour, H., Abderrahmen, B., Samir, Z., Riyadh, R. (2018). Backstepping control of a doubly-fed induction machine based on fuzzy controller. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 645-657. https://doi.org/10.3166/EJEE.20.645-657 | | 129 | Choudhary, R., Jain, S. | Second order resistance with homogeneous-
heterogeneous reactions for casson fluid in
stagnation point flow and falkner-skan flow
under presence of induced magnetic field | Homogeneous-heterogeneous, Falkner-
Skan flow, Casson fluid, Induced magnetic
field, Second order resistance | 20, 5-6, 659-686 | https://doi.org/10.3166/EJEE.20.659-686 | Choudhary, R., Jain, S. (2018). Second order resistance with homogeneous-heterogeneous reactions for casson fluid in stagnation point flow and failher-skan flow under presence of induced magnetic field. European Journal of Electrical Engineering. Vol. 20, No. 5-6, pp. 659-686. https://doi.org/10.3166/EJEE.20.659-686 | | 130 | Hadda, B., Larbi, C., Abdessalam, M. | A new technique of second order sliding mode
control applied to induction motor | Induction Motor Control, Second Order
Sliding Mode, Twisting Algorithm, Sliding
Mode Observer, Robust Control | 20, 4, 399-412 | https://doi.org/10.3166/EJEE.20.399-412 | Hadda, B., Larbi, C., Abdessalam, M. (2018). A new technique of second order sliding mode control applied to induction motor. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 399-412. https://doi.org/10.3166/ | | 131 | Shaik, K.P., Mohammad, M.H.,
Karimulla, S., Irshad, S.M. | Single stage boost inverter with low switching modulation technique | Single Stage Boost Inverter (SSBI), Low
Switching Modulation (LSM), Voltage
Stress, Current Stress | 20, 4, 413-426 | https://doi.org/10.3166/EJEE.20.413-426 | Shaik, K.P., Mohammad, M.H., Karimulla, S., Irshad, S.M. (2018). Single stage boost inverter with low switching modulation technique. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 413-426. https://doi.org/10.3166/ EJEE.20.413-426 | | 132 | Singhal, K., Goyal, G.R. | Comparative study of power consumption minimization in analog electronic circuit using AI techniques | Hybrid Algorithm, Power Consumption
Minimization, Frequency Response
Analysis, Ai Techniques | 20, 4, 427-438 | https://doi.org/10.3166/EJEE.20.427-438 | Singhal, K., Goyal, G.R. (2018). Comparative study of power consumption minimization in analog electronic circuit using AI techniques. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 427-438. https://doi.org/10.3166/ EJEE.20.427-438 | | 133 | Du, Y., Shi, F., Chen, Q.X., Wang, Y.Q.,
Zhao, J.Z., Li, Q. | An improved particle swarm scheduling algorithm based on batch changing production time | Multi-Time, Multi-Variety, Variable Batch,
Parallel Machine Scheduling, Improved
Particle Swarm Optimization Algorithm | 20, 4, 439-453 | https://doi.org/10.3166/EJEE.20.439-453 | Du, Y., Shi, F., Chen, Q.X., Wang, Y.Q., Zhao, J.Z., Li, Q. (2018). An improved particle swarm scheduling algorithm based on batch changing production time. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 439-453. https://doi.org/10.3166/
EJEE. 20.439-453 | | 134 | Manikandan, P., Khan, F.A. | Analysis of multimode oscillations caused by subsynchronous resonance on generator shaft | Modal analysis, subsynchronous resonance,
turbine-generator, finite element method | 20, 4, 455-468 | https://doi.org/10.3166/EJEE.20.455-468 | Manikandan, P., Khan, F.A. (2018). Analysis of multimode oscillations caused by subsynchronous resonance on generator shaft. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 455-468. https://doi.org/10.3166/EJEE.20.455-468 | | 135 | Rao, D.S.N.M., Kumar, N. | Optimal load dispatch solution of power system using enhanced harmony search algorithm | Non Convex, Economic Load Dispatch,
Harmony Search Algorithm (HS),
Enhanced Harmony Search Algorithm
(EHS), Valve Point Loading | 20, 4, 469-483 | https://doi.org/10.3166/EJEE.20.469-483 | Rao, D.S.N.M., Kumar, N. (2018). Optimal load dispatch solution of power system using enhanced harmony search algorithm. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 469-483. https://doi.org/10.3166/EJEE.20.469-483 | | 136 | Liu, T. | Status analysis and development planning for
the network of charging stations | Electric Vehicles, Network of Charging
Stations, Convenience | 20, 4, 485-498 | https://doi.org/10.3166/EJEE.20.485-498 | Liu, T. (2018). Status analysis and development planning for the
network of charging stations. European Journal of Electrical
Engineering, Vol. 20, No. 4, pp. 485-498.
https://doi.org/10.3166/EJEE.20.485-498 | | 137 | Aboelazm, Y.M., Wahba, W.E.,
Moustafa Hassan, M.A. | Mitigation of voltage swells in IEEE 30 bus and IEEE 57 bus systems using evolutionary techniques | Advanced Flexible Ac Transmission
System, Power Quality, Swarm Intelligence,
Total Harmonic Distortion, Voltage Swell
Mitigation | 20, 4, 499-516 | https://doi.org/10.3166/EJEE.20.499-516 | Aboelazm, Y.M., Walba, W.E., Moustafa Hassan, M.A. (2018).
Mitigation of voltage swells in IEEE 30 bus and IEEE 57 bus
systems using evolutionary techniques. European Journal of
Electrical Engineering, Vol. 20, No. 4, pp. 499-516.
https://doi.org/10.3166/EJEE.20.499-516 | | 138 | Ismail, G., Toufik, B.M., Said, B. | Real time implementation of feedback
linearization control based three phase shunt
active power filter | Harmonics, Shunt Active Filter, Feedback,
Total Harmonic Distortion | 20, 4, 517-532 | https://doi.org/10.3166/EJEE.20.517-532 | Ismail, G., Toufik, B.M., Said, B. (2018). Real time implementation of feedback linearization control based three phase shunt active power filter. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 5177-532.https://doi.org/10.3166/EJEE.20.517-532 | | 139 | Aboelazm, Y.M., Wahba, W.E.,
Moustafa Hassan, M.A. | Simulation of advanced STATCOM for voltage
swell mitigation in large-scale test system based
on swarm intelligence algorithms | Advanced Flexible Ac Transmission
System, Evolutionary Techniques, Power
Quality, Total Harmonic Distortion, Voltage
Swell Mitigation | 20, 3, 253-266 | https://doi.org/10.3166/EJEE.20.253-266 | Aboelazm, Y.M., Walba, W.E., Moustafa Hassan, M.A. (2018).
Simulation of advanced STATCOM for voltage swell mitigation in large-scale test system based on swam intelligence algorithms.
European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 253-266.
https://doi.org/10.3166/EJEE.20.253-266 | | 140 | Venkatesh, P.M., Babu, A.R.V., Suresh,
K. | Experimental investigations on modified
Savonius wind turbine with curtain
arrangements in the middle of the highway | Modified Savonius Wind Turbine, Boost
Power Converter, Highway Wind Mill,
Computational Fluid Dynamics, Curtain | 20, 3, 267-278 | https://doi.org/10.3166/EJEE.20.267-278 | Venkatesh, P.M., Babu, A.R.V., Suresh, K. (2018). Experimental investigations on modified Savonius wind turbine with curtain arrangements in the middle of the highway. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 267-278.
https://doi.org/10.3166/EJEE.20.267-278 | | _ | | Г | | 1 | | <u> </u> | |-----|--|---|---|----------------|---|--| | 141 | Hu, W., Zhang, B. | Short-term wind power forecast based on back-
propagation neural network corrected by
Markov chain | Markov Chain, Bp Neural Network, Wind
Power Forecast, Combined Forecast | 20, 3, 279-293 | https://doi.org/10.3166/EJEE.20.279-293 | Hu, W., Zhang, B. (2018). Short-term wind power forecast based
on back-propagation neural network corrected by Markov chain.
European Journal of Electrical Engineering, Vol. 20, No. 3, pp.
279-293. https://doi.org/10.3166/EJEE.20.279-293 | | 142 | Shaik, K.P., Irshad, S.M., Mohammad,
M.H., Karimulla, S. | A new AC – AC converter with buck and boost options | Commutation, AC-AC Converter, Buck-
Boost Modes, Inverting and
Non-Inverting | 20, 3, 295-308 | https://doi.org/10.3166/EJEE.20.295-308 | Shaik, K.P., Irshad, S.M., Mohammad, M.H., Karimulla, S. (2018). A new A.C. – A.C. converter with buck and boost options.
European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 295-308. https://doi.org/10.3166/EJEE.20.295-308 | | 143 | Luo, M.F., Lai, D.Y. | Distribution transformer monitoring and reactive power compensation | Transformer Terminal Unit (TTU), Central
Processing Unit (CPU), Distribution
Transformer, Digital Signal Processing
(DSP), Reactive Power, Local
Compensation | 20, 3, 309-324 | https://doi.org/10.3166/EJEE.20.309-324 | Luo, M.F., Lai, D.Y. (2018). Distribution transformer monitoring and reactive power compensation. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 309-324, https://doi.org/10.3166/EJEE.20.309-324 | | 144 | Chatterjee, S., Acharya, J., Murari
Pandey, K. | Degradation of aerodynamic performances of
two typical aerofolis under heavy rain: A
comparative study using CFD simulation | Angle of Attack, Lift, Drag, DPM, CFD | 20, 3, 325-332 | https://doi.org/10.3166/EJEE.20.325-332 | Chatterjee, S., Acharya, J., Murari Pandey, K. (2018).
Degradation of aerodynamic performances of two typical aerofoils
under heavy rain: A comparative study using CFD simulation.
European Journal of Electrical Engineering, Vol. 20, No. 3, pp.
325-332. https://doi.org/10.3166/EJEE.20.325-332 | | 145 | Liu, P., Yue, J.H. | Comparison between Dirichlet boundary
condition and mixed boundary condition in
resistivity tomography through finite-element
simulation | Resistivity Tomography (RT), Dirichlet
Boundary Condition, Mixed Boundary
Condition, 2D Geoelectric Field with A
Point Power Source | 20, 3, 333-345 | https://doi.org/10.3166/EJEE.20.333-345 | Liu, P., Yue, J.H. (2018). Comparison between Dirichlet
boundary condition and mixed boundary condition in resistivity
tomography through finite-element simulation. European Journal
of Electrical Engineering, Vol. 20, No. 3, pp. 333-345.
https://doi.org/10.3166/EJEE.20.333-345 | | 146 | Nuthalapati, B., Sinha, U.K. | Location and detection of downed power line fault not touching the ground | Power Line Communication (PLC), PLG
(power line guardian), High Impedance
Faults (HIF's), Active Smart Wires (ASW) | 20, 3, 347-362 | https://doi.org/10.3166/EJEE.20.347-362 | Nuthalapati, B., Sinha, U.K. (2018). Location and detection of downed power line fault not touching the ground. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 347-362.
https://doi.org/10.3166/ EJEE.20.347-362 | | 147 | Minh, V. T., Moezzi, R., Owe, I. | Fuel economy regression analyses for hybrid electric vehicle | Regression Analyses, Fuel Consumption,
Optimal Model, Hybrid Electric Vehicle,
Drive Cycle | 20, 3, 363-377 | https://doi.org/10.3166/EJEE.20.363-377 | Minh, V. T., Moezzi, R., Owe, I. (2018). Fuel economy regression analyses for hybrid electric vehicle. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 363-377. https://doi.org/10.3166/EJEE.20.363-377 | | | Zhao, W., Li, Y.J., Ren, J.Y., Chen, S.G.,
Li, Y.Q. | A novel operation state prediction method for
servers in smart grids | Data Monitoring, Chebyshev Inequality,
Rayleigh Distribution, Back Propagation
Neural Network (BPNN) | 20, 3, 379-392 | https://doi.org/10.3166/EJEE.20.379-392 | Zhao, W., Li, Y.J., Ren, J.Y., Chen, S.G., Li, Y.Q. (2018). A
novel operation state prediction method for servers in smart grids.
European Journal of Electrical Engineering, Vol. 20, No. 3, pp.
379-392. https://doi.org/10.3166/EJEE.20.379-392 | | 149 | Venkatesh, P.M., Vijay Babu, A.R.,
Suresh, K. | Experimental investigations on modified savonius wind turbine with curtain arrangements in the middle of the highway | Modified Savonius Wind Turbine, Boost
Power Converter, Highway Wind Mill,
Computational Fluid Dynamics, Curtain | 20, 2, 139-150 | https://doi.org/10.3166/EJEE.20.139-150 | Venkatesh, P.M., Vijay Babu, A.R., Suresh, K. (2018). Experimental investigations on modified savonius wind turbine with curtain arrangements in the middle of the highway. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 139-150. https://doi.org/10.3166/EJEE.20.139-150 | | | Kezrane, C., Laouid, Y.A., Lasbet, Y.,
Habib, S.H. | Comparison of different Organic Rankine
Cycle for power generation using waste heat | Organic Rankine Cycle, Internal Heat
Exchanger, Working Fluid, Superheating,
Waste Heat Source | 20, 2, 151-169 | https://doi.org/10.3166/EJEE.20.151-169 | Kezrane, C., Laouid, Y.A., Lasbet, Y., Habib, S.H. (2018).
Comparison of different Organic Rankine Cycle for power
generation using waste heat. European Journal of Electrical
Engineering, Vol. 20, No. 2, pp. 151-169.
https://doi.org/10.3166/EJEE.20.151-169 | | 151 | Zhang, S.H., Hou, L., Zou, L., Zhao, R.,
Ma, W.H. | Consistency check for secondary virtual terminals in smart substations | Standardization, Smart Substation, Virtual
Terminal, Match | 20, 2, 171-179 | https://doi.org/10.3166/EJEE.20.171-179 | Zhang, S.H., Hou, L., Zou, L., Zhao, R., Ma, W.H. (2018). Consistency check for secondary virtual terminals in smart substations. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 171-179. https://doi.org/10.3166/EJEE.20.171-179 | | 152 | Al-Shnynat, N. | Challenges of integrating a small hydropower plant at existing Mujib dam | Hydro-Power, Cross Flow Turbine,
Renewable Energy | 20, 2, 181-191 | https://doi.org/10.3166/EJEE.20.181-191 | Al-Shnynat, N. (2018). Challenges of integrating a small hydropower plant at existing Mujib dam. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 181-191. https://doi.org/10.3166/EJEE.20.181-191 | | 153 | Wang, J., Yuan, Z.J., Luo, X.B. | An intelligent control system for bladeless fans | Bladeless Fan, Distance Detection, Wind
Speed Regulation | 20, 2, 193-203 | https://doi.org/10.3166/EJEE.20.193-203 | Wang, J., Yuan, Z.J., Luo, X.B. (2018). An intelligent control system for bladeless fans. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 193-203.
https://doi.org/10.3166/EJEE.20.193-203 | | | Shaik, K. P., Karimulla, S., Mohammad
Irshad, S., Mohammad, M. H. | Simulation of single phase buck boost matrix converter without commutation issues | Buck Boost Converter, Inverting, Non-
Inverting, DVR, MATLAB/Simulink | 20, 2, 205-214 | https://doi.org/10.3166/EJEE.20.205-214 | Shaik, K. P., Karimulla, S., Mohammad Irshad, S., Mohammad, M. H. (2018). Simulation of single phase buck boost matrix converter without commutation issues. European Journal of Electrical Engineering. Vol. 20, No. 2, pp. 205-214. DOI: 10.3166/EJEE.20.205-214 | | 155 | Swain, K., Parida, S.K., Dash, G.C. | Thermal slip effect on MHD convective nanofluid flow over a vertical plate embedded in a porous medium | MHD, Nanofluid, Joule Heating, Radiation,
Viscous Dissipation, Porous Medium | 20, 2, 215-223 | https://doi.org/10.3166/EJEE.20.215-233 | Swain, K., Parida, S.K., Dash, G.C. (2018). Thermal slip effect on MHD convective nanofluid flow over a vertical plate embedded in a porous medium. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 215-223.https://doi.org/10.3166/EJEE.20.215-233 | | 156 | Hou, Y.C. | Circuit design for electrohydraulic proportional amplifier | Pulse Width Modulation (PWM),
Proportional Solenoid Coil, Proportional
Amplifier, Simulation | 20, 2, 235-245 | https://doi.org/10.3166/EJEE.20.235-245 | Hou, Y.C. (2018). Circuit design for electrohydraulic proportional amplifier. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 235-245. https://doi.org/10.3166/EJEE.20.235-245 | | 157 | Rao, C.N.N., Sukumar, G. | Design and analysis of torque ripple reduction in brushless DC motor using SPWM and SVPWM with PI control | BLDC Motor, PWM, SVPWM,
MATLAB/Simulink | 20, 1, 7-22 | https://doi.org/10.3166/EJEE.20.7-22 | Rao, C.N.N., Sukumar, G. (2018). Design and analysis of torque ripple reduction in brushless DC motor using SPWM and SVPWM with Pl control. European Journal of Electrical Engineering. Vol. 20, No. 1, pp. 7-22.
https://doi.org/10.3166/EJEE.20.7-22 | | 158 | Olugbenga, A. T., Nordiana, M. M. | Utilizing 2-D electrical resistivity imaging (ERI) to investigate groundwater potential | Aquifer, Groundwater Potential, Saturated Zone, Shale | 20, 1, 23-34 | https://doi.org/10.3166/EJEE.20.23-34 | Olugbenga, A. T., Nordiana, M. M. (2018). Utilizing 2-D electrical resistivity imaging (ERI) to investigate groundwater potential. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 23-34. https://doi.org/10.3166/EJEE.20.23-34 | | 159 | Wei, W., Chen, N., Xue, B.H., Zhang, X.Y. | Design of synchronous controller for intelligent
locomotive wipers | Dual Motor Drive, Wiper, Hall Current
Sensor, Synchronous Control | 20, 1, 35-46 | https://doi.org/10.3166/EJEE.20.35-46 | Wei, W., Chen, N., Xue, B.H., Zhang, X.Y. (2018). Design of
synchronous controller for intelligent locomotive wipers.
European Journal of Electrical Engineering, Vol. 20, No. 1, pp.
35-46. https://doi.org/10.3166/EJEE.20.35-46 | | 160 | Katuril, R., Gorantla, S. | Comparative analysis of controllers for a smooth switching between battery and ultracapacitor applied to E-vehicle | Solar Power, Hybral Electric Venices (HEVs), Bidirectional Converter (BDC), Unidirectional Converter (UDC), Battery, Ultracapacitor, Math Function Based (MFB) Controller, Proportional Integral Derivative (PID) Controller, ANN Controller, | 20, 1, 47-75 | https://doi.org/10.3166/EJEE.20.47-75 | Katuril, R., Gorantla, S. (2018). Comparative analysis of controllers for a smooth switching between battery and ultracapacitor applied to E-vehicle. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 47-75.
https://doi.org/10.3166/EJEE.20.47-75 | | |
| | 1 | | | |---|--|---|--|---|--| | Qu, S.R., Wang, Z.M. | Fine-grained dynamic frequency modulation algorithm based on critical state points | Embedded Mobile Terminals (EMTs),
Critical State Points (CSPs), Fine-Grained
Dynamic Frequency Modulation Algorithm
(FGDFMA), Power Management | 20, 1, 77-88 | https://doi.org/10.3166/EJEE.20.77-88 | Qu. S.R., Wang, Z.M. (2018). Fine-grained dynamic frequency modulation algorithm based on critical state points. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 77-88. https://doi.org/10.3166/EJEE.20.77-88 | | Bedoui, M., Belarbi, A.W., Habibes, S. | Macroscopic modeling of the glow dielectric
barrier discharge (GDBD) in helium | Dielectric Barrier Discharge (DBD), electric
model, equivalent electric circuit, gas
discharge, homogenous discharge,
simulation | 20, 1, 89-103 | https://doi.org/10.3166/EJEE.20.89-103 | Bedoui, M., Belarbi, A.W., Habibes, S. (2018). Macroscopic
modeling of the glow dielectric barrier discharge (GDBD) in
helium. European Journal of Electrical Engineering, Vol. 20, No.
1, pp. 89-103. https://doi.org/10.3166/EJEE.20.89-103 | | | Voltage control of multiple feeders by voltage regulator and instant
DG | Distribution Generation (DG), voltage control, distribution system, integer programming | 20, 1, 105-113 | https://doi.org/10.3166/EJEE.20.105-113 | Kethineni, B.K., Rachananjali, K., Rao, Y.S., Reddy, A.N. (2018). Voltage control of multiple feeders by voltage regulator and instant DG. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 105-113. https://doi.org/10.3166/EJEE.20.105-113 | | Lu, M., Zhang, Y.F., Cai, X.H., Li, H. | Virtual synchronous control of brushless
doubly-fed induction generator | Brushless Doubly-Fed Induction Generator
(BDFIG), hidden inertia, Virtual
Synchronous Control (VSC), wind turbine | 20, 1, 115-132 | https://doi.org/10.3166/EJEE.20.115-132 | Lu, M., Zhang, Y.F., Cai, X.H., Li, H. (2018). Virtual
synchronous control of brushless doubly-fed induction generator.
European Journal of Electrical Engineering, Vol. 20, No. 1, pp.
115-132. https://doi.org/10.3166/EJEE.20.115-132 | | Samala, R.K., Kotaputi, M.R. | Multi distributed generation placement using ant-lion optimization | distributed generation, backward and
forward sweep method, ant-loin
optimization algorithm optimal capacity,
optimal place, active power los | 19, 5-6, 253-267 | https://doi.org/10.3166/EJEE.19.253-267 | Samala, R.K., Kotaputi, M.R. (2017). Multi distributed generation placement using ant-lion optimization. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 253-267.
https://doi.org/10.3166/EJEE.19.253-267 | | | Design of firefly power system stabilizer for
stability improvement of multi machine system
under contingency | Power System Stabilizer (PSS), Firefly
Algorithm (FFY), Genetic Algorithm (GA),
pseudo spectrum analysis, contingency | 19, 5-6, 269-292 | https://doi.org/10.3166/EJEE.19.269-292 | Ravindrababu, M., Saraswathi, G., Sudha, K.R. (2017). Design of firefly power system stabilizer for stability improvement of multi machine system under contingency. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 269-292.
https://doi.org/10.3166/EJEE.19.269-292 | | Liu, L., Wang, S.T. | Performance improvement of wind turbine with
squirrel-cage induction generator by static
synchronous compensator and hybrid energy
storage system | Low-Voltage Ride-Through (LVRT),
Squirrel-Cage Induction Generator (SCIG),
Static Synchronous Compensator
(STATCOM), Series Dynamic Breaking
Resistor (SDBR), Hybrid Energy Storage
System (HESS) | 19, 5-6, 293-312 | https://doi.org/10.3166/EJEE.19.293-312 | Liu, L., Wang, S.T. (2017). Performance improvement of wind
turbine with squirrel-cage induction generator by static
synchronous compensator and hybrid energy storage system.
European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp.
293-312. https://doi.org/10.3166/EJEE.19.293-312 | | Katuri, R., Gorantla, S. | Design and analysis of a control strategy
approach for a smooth transition between
battery and ultracapacitor | HESS, EVs, converters, MFB controller, fuzzy logic controller, solar power | 19, 5-6, 313-339 | https://doi.org/10.3166/EJEE.19.313-339 | Katuri, R., Gorantla, S. (2017). Design and analysis of a control strategy approach for a smooth transition between battery and ultracapacitor. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 313-339. https://doi.org/10.3166/EJEE.19.313-339 | | Ai, X.Z., Yang, M.K., Liu, Z.D., Li, X.Q. | Modelling and control safety of digital push-
pull switched mode power supply | push-pull, switched mode, power supply,
Proportional-Integral-Derivative (PID)
control, matlab | 19, 5-6, 341-355 | https://doi.org/10.3166/EJEE.19.341-355 | Ai, X.Z., Yang, M.K., Liu, Z.D., Li, X.Q. (2017). Modelling and control safety of digital push-pull switched mode power supply.
European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp.
341-355. https://doi.org/10.3166/EJEE.19.341-355 | | Bala Krishna, K., Rosalina, K.M. | An optimal Phasor Measurement Unit
placement techniques for achieving complete
perceptibility of a network even when PMU
failure | state estimation, observability, optimization,
Phasor Measurement Unit (PMU), Binary
Integer Programming (BIP), Pmu outage | 19, 5-6, 357-366 | https://doi.org/10.3166/EJEE.19.357-366 | Bala Krishna, K., Rosalina, K.M. (2017). An optimal Phasor
Measurement Unit placement techniques for achieving complete
perceptibility of a network even when PMU failure. European
Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 357-366.
https://doi.org/10.3166/EJEE.19.357-366 | | Zeghoudi, A., Debbache, M., Hamidat, A. | Contribution to minimizing the cosine loss in a
thermodynamic solar tower power plant by a
change in the target position | heliostat, centrale solaire a tour, pertes cosinus, cible | 19, 5-6, 367-374 | https://doi.org/10.3166/EJEE.19.367-374 | Zeghoudi, A., Debbache, M., Hamidat, A. (2017). Contribution to minimizing the cosine loss in a thermodynamic solar tower power plant by a change in the target position. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 367-374.
https://doi.org/10.3166/EJEE.19.367-374 | | Chen, H.B., Chen, L., Han, W. | Short-term photovoltaic power forecasting
based on human body amenity and least
squares support vector machine with fruit fly
optimization algorithm | photovoltaic power generation, human body
amenity, least squares support vector
machine, short-term forecasting, fruit fly
optimization | 19, 5-6, 375-390 | https://doi.org/10.3166/EJEE.19.375-390 | Chen, H.B., Chen, L., Han, W. (2017). Short-term photovoltaic
power forecasting based on human body amenity and least
squares support vector machine with fruit fly optimization
algorithm. European Journal of Electrical Engineering, Vol. 19,
No. 5-6, pp. 375-390. https://doi.org/10.3166/EJEE.19.375-390 | | Hajdidj, M.S., Bibi-Triki, N., Didi, F. | Study and optimization of a renewable system of small power generation | photovoltaic system, wind system, hybrid
photovoltaic-wind-storage system, sizing,
optimization | 19, 3-4, 133-154 | https://doi.org/10.3166/EJEE.19.133-154 | Hajdidj, M.S., Bibi-Triki, N., Didi, F. (2017). Study and optimization of a renewable system of small power generation.
European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 133-154. https://doi.org/10.3166/EJEE.19.133-154 | | Sreedhar, T., Venkata, N. | Impact of distribution network reconfiguration under wheeling transactions | distribution systems, differential search
algorithm, network reconfiguration,
wheeling transactions | 19, 3-4, 155-165 | https://doi.org/10.3166/EJEE.19.155-165 | Sreedhar, T., Venkata, N. (2017). Impact of distribution network reconfiguration under wheeling transactions. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 155-165. https://doi.org/10.3166/EJEE.19.155-165 | | Xu, Y.P. | A study of hydropower generation process
control based on fuzzy control theory | hydropower unit control, fuzzy control,
variable structure control, buffeting | 19, 3-4, 167–179 | https://doi.org/10.3166/EJEE.19.167-179 | Xu, Y.P. (2017). A study of hydropower generation process
control based on fuzzy control theory. European Journal of
Electrical Engineering, Vol. 19, No. 3-4, pp. 167–179.
https://doi.org/10.3166/EJEE.19.167–179 | | | Transient stability improvement of microgrids
by using Resistive type SFCL and series active
power filters | Distributed Generation (DG), Resistive
Type Superconducting Fault Current
Limiter (R-SFCL), Phase Locked Loop
(PLL), Series Active Power Filter (SAPF) | 19, 3-4, 181-195 | https://doi.org/10.3166/EJEE.19.181-195 | Uma Maheswara, Rao M., Mercy Rosalina, K. (2017). Transient stability improvement of microgrids by using Resistive type SPCL and series active power filters. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 181-195.
https://doi.org/10.3166/EJEE.19.181-195 | | Hou, Y.C. | Design of conditioning circuit for weak signal in through-casing resistivity logging | extremely weak signals, through-casing resistivity logging, signal conditioning circuit, amplifier circuit, filter circuit | 19, 3-4, 197-208 | https://doi.org/10.3166/EJEE.19.197-208 | Hou, Y.C. (2017). Design of conditioning circuit for weak signal in through-casing resistivity logging. European Journal of Electrical Engineering. Vol. 19. No. 3-4, pp. 197-208. https://doi.org/10.3166/EJEE.19.197-208 | | Karthik, G., Jayanthu, S. | Quantification of cable deformation using TDR-experiments | Time Domain Reflectometry (Tdr), coaxial cable, reflection coefficient, opencast model | 19, 3-4, 209-219 | https://doi.org/10.3166/EJEE.19.209-219 | Karthik, G., Jayanthu, S. (2017). Quantification of cable deformation using TDR-experiments. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 209-219. https://doi.org/10.3166/EJEE.19.209-219 | | Slimani, H., Bendaoud, A., Reguig, A. | Measuring and reducing of harmonic pollution using rapid prototyping | interference, pollution harmonique,
simulation, prototypage rapide, DSP | 19, 3-4, 221-234 | https://doi.org/10.3166/EJEE.19.221-234 | Slimani, H., Bendaoud, A., Reguig, A. (2017). Measuring and reducing of harmonic pollution using rapid prototyping. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 221-234. https://doi.org/10.3166/EJEE.19.221-234 | | Liu, Z.J., Wu, W. | A novel control method for five-level H-
bridge/neutral point clamped inverter | multi-level, triangulation, Space Vector
Pulse Width Modulation (SVPWM), H-
Bridge/Neutral Point Clamped (H-NPC)
inverter | 19, 3-4, 235-245 | https://doi.org/10.3166/EJEE.19.235-245 | Liu, Z.J., Wu, W. (2017). A novel control method for five-level H-
bridge/neutral point clamped inverter. European Journal of
Electrical Engineering, Vol. 19, No. 3-4, pp. 235-245.
https://doi.org/10.3166/EJEE.19.235-245 | | | Qu,
S.R., Wang, Z.M. Bedoui, M., Belarbi, A.W., Habibes, S. Kethineni, B.K., Rachananjali, K., Rao, Y.S., Reddy, A.N. Lu, M., Zhang, Y.F., Cai, X.H., Li, H. Samala, R.K., Kotaputi, M.R. Ravindrababu, M., Saraswathi, G., Sudha, K.R. Liu, L., Wang, S.T. Katuri, R., Gorantla, S. Ai, X.Z., Yang, M.K., Liu, Z.D., Li, X.Q. Bala Krishna, K., Rosalina, K.M. Zeghoudi, A., Debbache, M., Hamidat, A. Chen, H.B., Chen, L., Han, W. Hajdidj, M.S., Bibi-Triki, N., Didi, F. Sreedhar, T., Venkata, N. Xu, Y.P. Uma Maheswara, Rao M., Mercy Rosalina, K. Hou, Y.C. Karthik, G., Jayanthu, S. | Bedoui, M., Belarbi, A.W., Habbee, S. Bedoui, M., Belarbi, A.W., Habbee, S. Macroscopic modeling of the glow dielectric harrier discharge (GDBD) in helium Kothiareni, B.K., Rachananjali, K., Rao, Yohage control of multiple feeders by voltage regulator and instant DG Lu, M., Zhang, Y.F., Cai, X.H., Li, H. Virtual synchronous control of brushless doubly-fed induction generator Multi distributed generation placement using antion optimization and inner placement using antion optimization placement using antion optimization generator by antion control and turbine with springerovement of multi machine system under contingency. Besign of firefly power system stabilizer for stability improvement of multi machine system under contingency. Besign and analysis of a control strategy approach for a smooth translition between the system and transpector. Al. X.Z., Yang, M.K., Lin, Z.D., Li, X.Q. Modelling and control safety of digital pushpall switched mode power supply. Bala Krishna, K., Rosalina, K.M. Pare and analysis of a control strategy approach for a smooth transition between the push of the supply of the power supply. An optimal Phasor Measurement Unit placement rehanjungs for achieving complete perceptibility of a network even when PMU failure. Zeghoudi, A., Debbache, M., Hamidat, A. Contribution to minimizing the cooine loss in a hermodynamic solar tower power plant by a change in the target position. Chen, H.B., Chen, L., Han, W. Stort-term photovolatic power forecasting based on human body amening and lesst squares support veer machine with fruit fly optimization algorithm. Hajdidj, M.S., Bibi-Triki, N., Didi, F. Sindy and optimization network reconfiguration under wheeling transactions Transient stability improvement of microgrids by using Resistive type SKTL and series active power filters. Lin, Y.C. Design of conditioning circuit for wesk signal in through-assign resistivity logging and reducing of harmonic pollution using rapid prototyping. | Sex. S.R., Wang, Z.M. aparthe board control alter primer Dynamic Polymer Property Meditation Algorithm Protection of Control State Point (TSS). First-Criminal Algorithm Protection of Control State Point (TSS). First-Criminal Algorithm Protection of Control State Point (TSS). First-Criminal Protection Pro | See S. R. Wong, Z. M. See S. R. Wong, Z. M. See See S. R. Wong, Z. M. See See S. R. Wong, Z. M. See S. R. R. R. R. Wong, S. R. See S. R. R. R. R. Wong, S. R. See S. R. R. R. R. Wong, S. R. See S. R. R. R. R. Wong, S. R. See S. R. R. R. R. Wong, S. R. See S. R. R. R. R. Wong, S. R. See S. R. R. R. R. Wong, S. R. See S. See S. R. R. R. Wong, S. R. R. Wong, S. R. Wong, S. R. R. R. Wong, S. R. R. R. Wong, S. Wong, S. R. R. Wong, S. R. Wong, S. R. R. Wong, S. R. R. Wong, S. R. Wong, S. R. Wong, S. R. R. Wong, S. | Description Content of Processes and Conte | | 181 | Adibi, T., Adibi, O., Amrikachi, A. | Investigation on the possibility of
substituting compression cooling cycle with
a solar absorption cooling cycle in tropical
regions of Iran | cavity flow, forced convection, Reynolds
number, complex boundary condition,
Nusselt number | 19, 1-2, 7-17 | https://doi.org/10.3166/EJEE.19.7-17 | Adibi, T., Adibi, O., Amrikachi, A. (2017). Investigation on the possibility of substituting compression cooling cycle with a solar absorption cooling cycle in tropical regions of Iran. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 7-17.
http://doi.org/10.3166/EJEE.19.7-17 | |-----|---|---|---|------------------|---|--| | 182 | Kanagasabai, L.K. | Improved canis rufus floridanus optimization algorithm for reduction of real power loss & maximization of static voltage stability margin | optimal reactive power, transmission loss,
canis rufus floridanus, particle swarm
optimization | 19, 1-2, 19-30 | https://doi.org/10.3166/EJEE.19.19-30 | Kanagasabai, L.K. (2017). Improved canis rufus floridanus optimization algorithm for reduction of real power loss & maximization of static voltages stability magin. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 19-30. https://doi.org/10.3166/EJEE.19.19-30 | | 183 | Kong, F., Shi, H.M., Wei, Z.Y., Liu, C.Y. | Life evaluation method for alternating current contactor of electrical multiple unit | electrical multiple unit (EMU), service life
assessment, failure mechanism, weibull
distribution; alternating current (AC)
contactor | 19, 1-2, 31-42 | https://doi.org/10.3166/EJEE.19.31-42 | Kong, F., Shi, H.M., Wei, Z.Y., Liu, C.Y. (2017). Life evaluation method for alternating current contactor of electrical multiple unit.
European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp.
31-42. https://doi.org/10.3166/EJEE.19.31-42 | | 184 | Kumar, D.A., Mishra S.R. | MHD stagnation point flow of micropolar fluid
past on a vertical plate in the presence of porous
medium | micropolar fluid, porous medium, assisting
and opposing flow, stagnation point,
numerical solution | 19, 1-2, 43-57 | https://doi.org/10.3166/EJEE.19.43-57 | Kumar, D.A., Mishra S.R. (2017). MHD stagnation point flow of
micropolar fluid past on a vertical plate in the presence of porous
medium. European Journal of Electrical Engineering, Vol. 19, No.
1-2, pp. 43-57. https://doi.org/10.3166/EJEE.19.43-57 | | 185 | Shi, Y.G., Zhang, X.J., Li, J.X., Liu, L.,
Cui, Y.J. | Design of STM32-based hub motor controller | wheeled mobile robot, Brushless Direct
Current (DC) Motor, Proportional-Integral
–Derivative (PID) control, digital control
system, three-phase full bridge inverter | 19, 1-2, 59-73 | https://doi.org/10.3166/EJEE.19.59-73 | Shi, Y.G., Zhang, X.J., Li, J.X., Liu, L., Cui, Y.J. (2017). Design of STM32-based hub motor controller. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 59-73. https://doi.org/10.3166/EJEE.19.59-73 | | 186 | Evuri, G.R., Gorantla, S.R., Reddy,
T.R.S. | Enhancing the efficiency of a DC-DC converter
used for hybrid electrical vehicles to suit uphill
and downhill terrains | DC-DC converter, hybrid electric vehicle, terrains, PI and PID | 19, 1-2, 75-89 | https://doi.org/10.3166/EJEE.19.75-89 | Evuri, G.R., Goranda, S.R., Reddy, T.R.S. (2017). Enhancing the efficiency of a DC-DC converter used for hybrid electrical webicles to suit uphill and downhill terrains. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 75-89.
https://doi.org/10.3166/EJEE.19.75-89 | | 187 | Enany, T.A., Hassan, M.A.M., Othman, E.S. | Induction motor temperature monitoring via
signal injection enhanced with adaptive neuro-
fuzzy inference system | temperature estimation, thermal protection,
adaptive neuro-fuzzy inference system,
induction motor, signal injection, soft starter | 19, 1-2, 91-109 | https://doi.org/10.3166/EJEE.19.91-109 | Enany, T.A., Hassan, M.A.M., Othman, E.S. (2017). Induction
motor temperature monitoring via signal injection enhanced with
adaptive neuro-fuzzy inference system. European Journal of
Electrical Engineering, Vol. 19, No. 1-2, pp. 91-109.
https://doi.org/10.3166/EJEE.19.91-109 | | 188 | Li, X., Liu, M.W., Feng, Y.L. | Bulk acoustic resonator devices using ZnO-
based film and back cavity | back cavity, bulk silicon micromachining,
film bulk acoustic resonator, ZnO
piezoelectric film | 19, 1-2, 111-125 | https://doi.org/10.3166/EJEE.19.111-125 | Li, X., Liu, M.W., Feng, Y.L. (2017). Bulk acoustic resonator
devices using ZnO-based film and back cavity. European Journal
of Electrical Engineering, Vol. 19, No. 1-2, pp. 111-125.
https://doi.org/10.3166/EJEE.19.111-125 |