A Constructive Approach To Multicriteria Decision Making. Une Approche Constructive de la Décision Multicritère

A Constructive Approach To Multicriteria Decision Making

Une Approche Constructive de la Décision Multicritère

Michel Grabisch

Université Paris I – Panthéon-Sorbonne; LIP6, 8, rue du Capitaine Scott, 75015 Paris, France

Page: 
321-337
|
Received: 
9 February 2004
|
Accepted: 
N/A
|
Published: 
30 September 2005
| Citation

OPEN ACCESS

Abstract: 

After a general introduction on multicriteria decision aid,we briefly present the two main approaches (outranking methods,multi-attribute utility).Then we focus on the multi-attribute utility framework,which we build in a new perspective,based on the MACBETH methodology and the notion of capacity.We show that the Choquet integral appears as a natural tool for aggregating criteria,and we study several types of capacities which are useful in practice (k-additive capacities,p-symmetric capacities).We end the paper by introducing bipolar models.

Résumé

Après une introduction générale à la problématique de la décision multicritère,nous présentons brièvement les deux approches principales (méthodes de surclassement,et approche de l'utilité multi-attributs). Nous nous focalisons ensuite sur l'approche de l'utilité multi-attributs,que nous essayons de construire dans une perspective nouvelle,basée sur la méthodologie MACBETH et la notion de capacité. Nous montrons qu'alors l'intégrale de Choquet apparaît comme un outil naturel pour l'agrégation des critères,et nous étudions différents types de capacités utiles en pratique (capacités k-additives,p-symétriques). Dans une dernière section,nous abordons les modèles bipolaires.

Keywords: 

Multicriteria decision aid,capacity,Choquet integral,bipolar scale.

Mots clés

Décision multicritère,capacité,intégrale de Choquet,échelle bipolaire.

1. Introduction
2. Qu'est-Ce Que la Décision Multicritère?
3. Les Deux Approches Principales
4. Une Méthodologie Multicritère Basée Sur MAUT
5. Vers des Modèles plus Généraux
6. Les Modèles Bipolaires
7. Conclusion
  References

[1] A.APPRIOU, A.AYOUN, S.BENFERHAT, P.BESNARD, L.CHOLVY, R.COOKE, F.CUPPENS, D.DUBOIS, H.FARGIER, M.GRABISCH, R.KRUSE, J.LANG, S.MORAL, H.PRADE, A.SAFFIOTTI, P.SMETS, C.SOSSAI, Fusion: general concepts and characteristics, Int. J. of Intelligent Systems, 16, 1107-1134, 2001. 

[2] K.ARROW, Social choice et individual values, Wiley, 2nd edition, 1963. 

[3] C.A. BANA E COSTA, J.C. VANSNICK, A theoretical framework for Measuring Attractiveness by a Categorical Based Evaluation TecHnique (MACBETH). In Proc. XIth Int. Conf. on MultiCriteria Decision Making, p. 15-24, Coimbra, Portugal,August 1994. 

[4] C.A. BANA E COSTA, J.C. VANSNICK, Applications of the MACBETH approach in the framework of an additive aggregation model. J. of Multicriteria Decision Analysis, 6 :107-114, 1997. 

[5] C.A. BANA E COSTA, J.C. VANSNICK,The MACBETH approach: basic ideas, software and an application. In N.Meskens and M. Roubens, editors, Advances in Decision Analysis, p. 131-157, Kluwer Academic Publishers, 1999. 

[6] J.M. BILBAO, J.R. FERNANDEZ, A.JIMÉNEZ LOSADA, E.LEBRÓN, Bicooperative games. In J.M. Bilbao, editor, Cooperative games on combinatorial structures, Kluwer Acad. Publ., 2000. 

[7] J.T. CACIOPPO, W.L. GARDNER, G.G. BERNTSON, Beyond bipolar conceptualizations and measures: the case of attitudes and evaluative space, Personality and Social Psychology Review, 1(1): 3-25, 1997. 

[8] G.CHOQUET, Theory of capacities. Annales de l'Institut Fourier,5: 131-295, 1953.

[9] D.DENNEBERG, Non-Additive Measure and Integral, Kluwer Academic, 1994. 

[10] D.DENNEBERG, M.GRABISCH, Interaction transform of set functions over a finite set, Information Sciences, 48(1): 15-27, 1999. 

[11] I.DRAGAN, Personal communication, 1997. 

[12] D.DUBOIS, H.PRADE, Weighted minimum and maximum operations in fuzzy set theory. Information Sciences, 39: 205-210, 1986. 

[13] R.O. DUDA, P.E. HART, Pattern classification and scene analysis. Wiley-Interscience, 1973. 

[14] J.FIGUEIRA, S.GRECO, M.EHRGOTT, editors, Multiple Criteria Decision Analysis: State of the Art Surveys. Kluwer Acad. Publ., 2004. 

[15] J.C. FODOR, M.ROUBENS, Fuzzy Preference Modelling and MultiCriteria Decision Aid, Kluwer Academic Publisher, 1994. 

[16] M.GRABISCH, Alternative representations of discrete fuzzy measures for decision making, Int. J. of Uncertainty, Fuzziness, and Knowledge Based Systems, 5: 587-607, 1997. 

[17] M.GRABISCH, k-order additive discrete fuzzy measures and their representation, Fuzzy Sets and Systems, 92: 167-189, 1997. 

[18] M.GRABISCH, A graphical interpretation of the Choquet integral, IEEE Tr. on Fuzzy Systems, 8: 627-631, 2000. 

[19] M.GRABISCH, The interaction and Möbius representations of fuzzy measures on finite spaces, k-additive measures: a survey. In M. Grabisch, T.Murofushi, and M.Sugeno, editors, Fuzzy Measures and Integrals – Theory and Applications, p. 70-93, Physica Verlag, 2000. 

[20] M.GRABISCH, Set function over finite sets: transformations and integrals. In E.Pap, editor, Handbook of Measure Theory, p. 1381-1401. Elsevier Science Publ., 2002. 

[21] M.GRABISCH, The Choquet integral as a linear interpolator. In 10th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), p. 373-378, Perugia, Italy, July 2004. 

[22] M.GRABISCH, CH. LABREUCHE, Bi-capacities. In Joint Int. Conf. on Soft Computing and Intelligent Systems and 3d Int. Symp. on Advanced Intelligent Systems, Tsukuba, Japan, October 2002.

[23] M.GRABISCH, CH. LABREUCHE, Bi-capacities for decision making on bipolar scales. In EUROFUSE Workshop on Informations Systems, p. 185-190, Varenna, Italy, September 2002. 

[24] M.GRABISCH, CH. LABREUCHE, Fuzzy measures and integrals in MCDA, In J.Figueira, S.Greco, and M.Ehrgott, editors, Multiple Criteria Decision Analysis. Kluwer Academic Publishers, to appear.

[25] M.GRABISCH, CH. LABREUCHE, J.C. VANSNICK. On the extension of pseudo-Boolean functions for the aggregation of interacting bipolar criteria. Eur. J. of Operational Research, 148: 28-47, 2003. 

[26] M.GRABISCH, S.A. ORLOVSKI, R.R. YAGER, Fuzzy aggregation of numerical preferences. In R.Slowi´nski, editor, Fuzzy Sets in Decision Analysis, Operations Research and Statistics, The Handbooks of Fuzzy Sets Series, D. Dubois and H. Prade (eds), p. 31-68, Kluwer Academic, 1998. 

[27] M.GRABISCH, P.PERNY,Agrégation multicritère. In C.Marsala B. Bouchon-Meunier, editor, Logique floue, principes, aide à la décision, p. 81-120, Hermès, 2003. 

[28] S.GRECO, B.MATARAZZO, R.SLOWINSKI, Bipolar Sugeno and Choquet integrals, In EUROFUSE Workshop on Informations Systems, p. 191-196, Varenna, Italy, September 2002. 

[29] O.HUDRY,Votes et paradoxes: les élections ne sont pas monotones! Math. et Sci. Humaines / Mathematics and Social Sciences, 41(163): 9-39, 2003. 

[30] R.L. KEENEY, H.RAIFFA, Decision with Multiple Objectives, Wiley, New York, 1976. 

[31] A.KOLMOGOROFF, Sur la notion de moyenne, Atti delle Reale Accademia Nazionale dei Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez., 12: 323-343, 1930. 

[32] D.H. KRANTZ, R.D. LUCE, P.SUPPES, A.TVERSKY, Foundations of measurement, volume 1: Additive and Polynomial Representations. Academic Press, 1971.

[33] CH. LABREUCHE, M.GRABISCH, The Choquet integral for the aggregation of interval scales in multicriteria decision making, Fuzzy Sets and Systems, 137: 11-26, 2003. 

[34] J.L. MARICHAL, An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria, IEEE Tr. on Fuzzy Systems, 8(6): 800-807, 2000. 

[35] P.MIRANDA, M.GRABISCH, P.GIL, p-symmetric fuzzy measures. Int. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, 10 (Suppl.):105-123, 2002. 

[36] T.MUROFUSHI, A technique for reading fuzzy measures (I): the Shapley value with respect to a fuzzy measure. In 2nd Fuzzy Workshop, p. 39-48, Nagaoka, Japan, October 1992. In Japanese. 

[37] T.MUROFUSHI, S.SONEDA, Techniques for reading fuzzy measures (III): interaction index, In 9th Fuzzy System Symposium, p. 693-696, Sapporo, Japan, May 1993. In Japanese. 

[38] T.MUROFUSHI, M.SUGENO, An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets & Systems, 29: 201-227, 1989. 

[39] T.MUROFUSHI, M.SUGENO, Some quantities represented by the Choquet integral, Fuzzy Sets & Systems, 56: 229-235, 1993. 

[40] M.NAGUMO,Über eine Klasse der Mittelwerte,Japanese Journal of Mathematics, 6:71-79, 1930. 

[41] C.E. OSGOOD, G.J. SUCI, P.H. TANNENBAUM, The measurement of meaning, University of Illinois Press, Urbana, IL, 1957. 

[42] E.PETERS, P.SLOVIC, Affective asynchrony and the measurement of the affective attitude component, Working paper. 

[43] M.PIRLOT,PH. VINCKE, Semiorders – Properties, Representations, Applications, Kluwer Academic Publishers, 1997. 

[44] J.C. POMEROL, S.BARBA-ROMERO, Multicriterion decision in management: principles and practice, Kluwer Academic Publishers, 2000. 

[45] R.RADNER, Satisficing, J. of Math. Economics, 2: 253-262, 1975. 

[46] F.S. ROBERTS, Measurement Theory,Addison-Wesley, 1979. 

[47] M.ROUBENS, PH. VINCKE, Preference Modelling, volume 250 of Lecture Notes in Economics and Mathematical Sciences, Springer Verlag, 1985. 

[48] B.ROY, Classement et choix en présence de points de vue multiples (la méthode ELECTRE), R.I.R.O., 2: 57-75, 1968. 

[49] B.ROY, How outranking relations helps multiple criteria decision making. In J.L. Cochrane and M.Zeleny, editors, Multiple Criteria Decision Making, pages 179-201. University of South California Press, Columbia, 1973. 

[50] B.ROY, Electre III: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples, Cahiers du Centre d'Etude de Recherche Opérationnelle, 20(1): 3243, 1978. 

[51] B.ROY, Méthodologie multicritère d'aide à la décision, Economica, Paris, France, 1985. 

[52] B.ROY, Decision science or decision-aid science? Eur. J. of Operational Research, 66: 184-203, 1993. 

[53] B.ROY, D.BOUYSSOU, Aide multicritère à la décision: Méthodes et Cas. Economica, 1994. 

[54] L.S. SHAPLEY,A value for n-person games, In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory of Games, Vol. II, number28 in Annals of Mathematics Studies, p. 307-317. Princeton University Press, 1953. 

[55] H.SIMON, Rational choice and the structure of the environment. Psychological Review, 63(2):129-138, 1956. 

[56] H.A. SIMON, Theories of bounded rationality, In Peter Earl, editor, The Legacy of Herbert Simon in Economic Analysis, volume1, Edward Elgar Publishing Ltd, 2001. 

[57] P.SLOVIC, M.FINUCANE, E.PETERS, D.G. MACGREGOR, The affect heuristic. In T.Gilovitch, D.Griffin, and D.Kahneman, editors, Heuristics and biases: the psychology of intuitive judgment, p. 397-420, Cambridge University Press, 2002. 

[58] M.SUGENO, Theory of fuzzy integrals and its applications, PhD thesis, Tokyo Institute of Technology, 1974.

[59] A.TVERSKY,D.KAHNEMAN,Advances in prospect theory:cumulative representation of uncertainty, J. of Risk and Uncertainty, 5:297-323, 1992. 

[60] J.ˇSIPOˇ S, Integral with respect to a pre-measure, Math. Slovaca, 29:141-155, 1979.

[61] R.R. YAGER, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Systems, Man & Cybern, 18: 183-190, 1988.