Visual Quality Measure of the Compressed Images. Mesure de la Qualité Visuelle des Images Compressées

Visual Quality Measure of the Compressed Images

Mesure de la Qualité Visuelle des Images Compressées

Ahmed Tamtaoui Driss Aboutajdine 

INPT, Avenue Allal Al Fassi, Rabat Instituts, 10100 Rabat, Maroc

GSCM-LEESA, Département de Physique, Avenue Ibn Batouta B.P. 1014, Rabat Maroc

Page: 
43-53
|
Received: 
8 July 2002
|
Accepted: 
N/A
|
Published: 
31 March 2003
| Citation

OPEN ACCESS

Abstract: 

This article presents a visual quality measure of the compressed monochrome image. This measure uses a reference image. The originality of this measure is based on the weighting of the Standard measures by a local error density, calculated on the windows overlapping the image. The local error computation is based on the contrast, the structure and the quantification criteria. Actually, this method is compared with standard PSNR (Peak Signal to Noise Ratio) and MAE (Mean of Absolute Error) measures, weighted by the simplified Daly model [6], and Fränti [9] methods. The results of our measure are reliable, compared with the methods mentioned above. The results are then evaluated in terms of the correlation measure with the Mean Opinion Score (MOS). 

Résumé

Cet article présente une méthode de mesure objective de la qualité visuelle des images monochromes dégradées par des schémas de codage. La méthode développée se classe dans le cadre des méthodes utilisant une référence. L’originalité de la méthode repose sur la pondération des mesures standards par une densité d’erreur locale calculée sur des fenêtres d’analyse recouvrant l’image. Le calcul de cette densité se base sur trois critères qui sont le contraste, la structure et la quantification. D’autres méthodes, telles que les mesures standards PSNR (Peak Signal to Noise Ratio) et EAM (Erreur Absolue Moyenne), pondérées par le modèle de Daly simplifié [6], et la méthode de Fränti [9], sont décrites dans cet article. Les résultats des différentes méthodes de mesure sont comparés entre eux. La mesure proposée est la plus fiable en terme de coefficient de corrélation avec la mesure subjective pour l’ensemble des images testées.

Keywords: 

Quality assessment, objective quality, Mean Opinion Score (MOS), image compression, distortion measures.

Mots clés 

Qualité objective, qualité subjective, évaluation de la qualité, Mean Opinion Score (MOS), codage d’image, mesure des dégradations, coefficient de corrélation

1. introduction
2. Mesures Standards Pondérées par le Modèle de Daly
3. Méthode de Fränti
4. Mesure de Dégradations Basée sur la Densité de Pertinence
5. Évaluation de la Qualité subjective des Images Test
6. Remise à L’échelle de la Mesure Objective
7. Résultats
8. Conclusion et Perspectives
9. Remerciements
  References

[1] CCIR, «Rec. 500-2, Method for the subjective assessment of the quality of television picture, Recommendations et Rapports du CCIR, Genève, 1982. 

[2] K. BELKACEM-BOUSSAID and A. BEGHDADI, A new image smoothing method based on a simple model of spatial processing in the early stages of human vision, IEEE Trans. On Image Processing, Vol. 9, NO. 2, February 2000. 

[3] C. CHRISTOPOULOS, A. SKODRAS and T. EBRAHIMI, The JPEG2000 still image coding system: An overview, IEEE Transactions on Consumer Electronics, Vol. 46, No 4, pp. 1103-1127, November 2000. 

[4] P. C. COSMAN, R. M. GRAY and R. O. OLSHEN, Evaluating quality of compressed medical images: SNR, Subjective Rating, and Diagnostic Accuracy, Proceedings of the IEEE, Vol. 82, No. 6, June 1994. 

[5] S. DALY, The visible differences predictor: An algorithm for the assessment of image fidelity, In « Digital images and human vision », edited by Andrew B. Watson, A Bradford Book, The MIT Press, Cambridge, 1993. 

[6] S. DALY, Subroutine for the generation of a two dimensional human visual contrast sensitivity function, Technical Report, Eastman Kodak, 1987. 

[7] A. M. ESKICIOGLU and P. S. FISHER, Image quality measures and their performance, IEEE Trans. on Comm., Vol. 43, No. 12, December 1995. 

[8] T. EUDE, Quality assessment of still monochrome images, ICISP’01, International Conference on Image and Signal Processing, May 3-5, Agadir, 2001. 

[9] P. FRÄNTI, Blockwise distorsion measure for statistical and structural errors in digital images, Signal Processing: Image communication 13, pp89-98, 1998. 

[10] S. HEMAMI, Supra-threshold wavelet coefficient quantization in natural images : analysis and application to compression, ICISP’01, International Conference on Image and Signal Processing, May 3-5, Agadir, 2001. 

[11] M. JUNG, D. LEGER, M. GAZALET, Méthode d’évaluation univariantede la qualité des images. Application à des images comprimées selon la norme JPEG, Revue de Traitement du signal, Volume 17 numéro 2, 2000 

[12] S. A. KARUNASEKERA and N. G. KINGSBURY, A distortion measure for blocking artifacts in image based on human visual sensitivity, IEEE Transactions on Image Processing, Vol. 4, No. 6, June 1995. 

[13] Chun-Hung KUO, Chang-Fuu CHEN and Wen-Nan HSIA, A compression algorithm based on classified Interpolative block truncation coding and vector quantization, Journal of Information Science and Engineering 15, pp. 1-9, 1999. 

[14] P. Le CALLET et D. BARBA, Critères objectifs de qualité visuelle : le passage d’erreurs locales a une appréciation globale de qualité, CORESA 2000, Octobre 2000. 

[15] A. MAYACHE, T. EUDE and H. CHERIFI, A comparison of image quality models and metrics based on human visual sensitivity, ICIP’98, October 4-7, 1998 Chicago, Illinois, USA. 

[16] M. MIYAHARA, K. KOTANI and V.R. ALGAZI, Objective picture quality scale (PQS) for image coding, IEEE Transactions on Communications, 1998 

[17] N. B. NILL, A visual model weighted cosine transform for image compression and quality assessment, IEEE Transactions on Communications, Vol. COM-33, No. 6, June 1985. 

[18] S. OLSSON, M. STROPPIANA, J. BAÏNA, Objective methods for assessment of video quality: state of the art, IEEE Transaction on Broadcasting, Vol. 43, No 4, December 1997. 

[19] A. SAADANE, H. SENANE and D. BARBA, Visual coding: design of psychovisual quantizers, Journal of Visual Communication and Image Representation, Vol. 9, No. 4, December 1998, pp. 381-391. 

[20] H. SAMET, The Quadtree and related hierarchical data structures, ACM Compt. Surv., Vol. 16, pp. 188-260, June 1984. 

[21] A. TAMTAOUI, D. ABOUTAJDINE, Elaboration de critères de mesures de qualité objective pour la qualité subjective, GRETSI’99, Septembre 1999, Vannes, France 

[22] A. TAMTAOUI, D. ABOUTAJDINE , A new objective distortion measure for compressed image quality, ISIVC’00, Rabat, Maroc, 2000 

[23] K.T. TAN and GHANBARI, Measuring blocking artefacts using harmonic analysis, Electronic letters, Vol.35, No. 16, August 1999. 

[24] T. TIFFANY et S. HAKIM, L’apport d’un bloc de segmentation d’erreur dans l’évaluation de la qualité d’images, GRETSI’01, 2001, Toulouse, France. 

[25] N. DAMERA-VENKATA, Image Quality assessment based on a degradation model, IEEE Transaction on Image Processing, Vol. 9 No. 4, April 2000. 

[26] Ching-Yang WANG, Shiuh-Ming LEE, Long-Wen CHANG, Designing JPEG quantization tables based on human visual system, Signal Processing: Image Communication 16, pp. 501-506, 2001.

[27] A. B.WATSON, G. Y. YANG, J. A. SOLOMON, and J. VILLASENOR, Visual thresholds for wavelet quantization error, Proc. SPIE, pp. 382-392, 1996. 

[28] A. B. WATSON, DCTune: A technique for visual optimization of DCT quantization matrices for individual images, Society for Information Display Digest of Technical Papers XXIV, pp. 946-949, 1993. 

[29] Digital images and human vision, edited by Andrew B. Watson, A Bradford Book, The MIT Press, Cambridge, 1993. 

[30] Fractal image compression-theory and application, Y. Fisher, SpringerVerlag edition, New York, 1994. 

[31] http://www.imagepower.com/products/jp2bugs.htm

[32] http://inls.ucsd.edu/y/Fractals/Mars-1.0.tar.gz