Mapping marine biophony

Mapping marine biophony

Julie Lossent Cédric Gervaise Lucia Di Iorio Pierre Boissery 

France Energies Marines 15, rue Johannes Kepler technopole Brest-Iroise, 29200 Brest, France

Chaire Chorus, Fondation partenariale Grenoble INP 46, avenue Felix Viallet, 38031, Grenoble Cedex 1, France

GIPSA-lab, 11 Rue des Mathématiques, Domaine Universitaire BP 46, 38402 Saint Martin d’Hères

Agence de l’Eau Rhône Méditerranée Corse Imm Le Noailles 62 La Cannebière, 13001 Marseille

Corresponding Author Email: 
julie.lossent@france-energies-marines.org
Page: 
131-151
|
DOI: 
https://doi.org/10.3166/TS.33.131-151
Received: 
27 May 2015
| |
Accepted: 
18 December 2015
| | Citation

OPEN ACCESS

Abstract: 

1922 10s-long snapshots of sounds have been measured in a small 4km2 coastal area (depth from 0 m to 50 m) near the pointe of Revelatta, (Calvi, Corse). Our aim is to build the soundscape of this complex area hosting 4 interleaved habitats (rocks, seagrass, sand, coralligenous). Wide Band [2 kHz, 40 kHz] SPL is maximum at the rocks and decrease offshore with the regression law: SPL (dB re.1µPa) = 147 – 14log10(r) with r the distance to the coastline. The range of detection of the biophony of the rocks extends from 1800m to 8300m. This regression law based on energetic criteria only allows to think that the biophony of the rocks is loud and propagates to the others habitats. We assess the diversity of the spectral shape of the biophony by computing the PCA of 2 million of measured spectra. The two first eigenvalues explain 50% of the spectral variability. The spectra and their scores 1 and 2 create a continuous cloud in {score 1, score 2} plan. Then, we propose to segment the data in 4 quadrants depending of the sign of score 1 and score 2 of the PCA. Each quadrant produces a family of spectral signatures (spectrum with high peak at 3 kHz and 4 KHz, spectrum with wide bump between 5 kHz and 12 kHz, spectrum with maximum at high frequency more than 20 kHz). The 4 proportions of impulses from a given habitat in each of the 4 quadrants are proposed to describe the diversity of spectrum shape of this habitat. For our data base, each habitat hosted the four families of spectral signature but with different proportions. The coralligenous hosts its own sound production with high frequency impulses. The rocks hosts its own sound production with low frequency impulses. Seagrass habitats listen to the rocks and sand habitats listen to the rocks and the coralligenous.

Keywords: 

underwater soundscapes, biophony, benthic habitats, principal component analysis, passive acoustic monitoring.

Extended abstract
1. Introduction
2. Matériel expérimental et préparation des données
3. Analyses à partir des niveaux « large bande » SPL dans la bande [2 - 40 kHz]
4. Analyses à partir des spectres bande étroite SPL(f) dB re.1µPa2/Hz
5. Conclusions
Remerciements
  References

Au W. W., and Hastings M. C. (2008). Principles of marine bioacoustics, Springer.

Calder A. J., Burton A. M., Miller P., Young A. W., and Akamatsu S. (2001). A principal component analysis of facial expressions, Vision Res., 41, 1179-1208.

Cato D. H., and Bell M. J. (1992). Ultrasonic Ambient Noise in Australian Shallow Waters at Frequencies up to 200 kHZ.

Chitre M., Legg M., and Koay T.-B. (2012). Snapping shrimp dominated natural soundscape in Singapore waters, Contrib Mar Sci, 2012, 127-134.

Coquereau L., Grall J., Chauvaud L., Gervaise C., Jolivet A., Clavier J., and Di Iorio L. (2015). Sound production and associated behaviors of benthic invertebrates from northeat Atlantic maerl beds, J. Exp. Mar. Biol. Ecol., Accepted.

Costanza, R., d’ Arge, R., Groot, R. de, Farber, S., Grasso, M., Hannon, B., Limburg, K., et al. (1997). The value of the world’s ecosystem services and natural capital, Nature, 387, 253-260.

Ferguson B. G., and Cleary J. L. (2001). In situ source level and source position estimates of biological transient signals produced by snapping shrimp in an underwater environment, J. Acoust. Soc. Am., 109, 3031-3037.

Gervaise C., Simard Y., Roy N., Kinda B., and Ménard N. (2012). Shipping noise in whale habitat: Characteristics, sources, budget, and impact on belugas in Saguenay–St Lawrence Marine Park hub, J. Acoust. Soc. Am., 132, 76-89. doi:10.1121/1.4728190

Gobert S., Chéry A., Volpon A., Pelaprat C., and Lejeune P. (2014). The Seascape as an Indicator of Environmental Interest and Quality of the Mediterranean Benthos: The in Situ Development of  a  Description  Index:  The  LIMA,  Underw.  Seascapes,  Springer, p. 277-291.

Goslin J., Perrot J., Royer J.-Y., Martin C., Dziak R.-P., Fowler M., Fox C., et al. (2004). Acoustic monitoring of the Mid-Atlantic Ridge North of the Azores : preliminary results of the SIRENA experiment, InterRidge News, 13, 9–13.

Guan S., Lin T.-H., Chou L.-S., Vignola J., Judge J., and Turo D. (2015). Dynamics of soundscape in a shallow water marine environment: A study of the habitat of the Indo- Pacific humpback dolphin, J. Acoust. Soc. Am., 137, 2939-2949.

Di Iorio L., Gervaise C., Jaud V., Robson A. A., and Chauvaud L. (2012). Hydrophone detects cracking sounds: Non-intrusive monitoring of bivalve movement, J. Exp. Mar. Biol. Ecol., 432, 9-16.

Kennedy E., Holderied M., Mair J., Guzman H., and Simpson S. (2010). Spatial patterns in reef-generated noise relate to habitats and communities: evidence from a Panamanian case study, J. Exp. Mar. Biol. Ecol., 395, 85-92.

Kinda G. B., Simard Y., Gervaise C., Mars J. I., and Fortier L. (2013). Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing, J. Acoust. Soc. Am., 134, 77-87.

Kinda G. B., Simard Y., Gervaise C., Mars J. I., & Fortier L. (2015). Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. The Journal of the Acoustical Society of America, 138(4), 2034-2045. http://doi.org/10.1121/1.4929491

Krause B. (1987). Bioacoustics: Habitat Ambience & Ecological Balance, Whole Earth Review.

Lejeune P., Abadie A., Binard M., Biondo R., and Borges A. (2013). STARE-CAPMED (STation of Reference and rEsearch on Change of local and global Anthropogenic Pressures on Mediterranean Ecosystems Drifs). Rapport d’activité 2013 (Rapport de recherche), STARESO, p. 147.

Lillis A., Eggleston D. B., and Bohnenstiehl D. (2014a). Estuarine soundscapes: distinct acoustic characteristics of oyster reefs compared to soft-bottom habitat, Mar. Ecol. Prog. Ser., 505, 1-17.

Lillis A., Eggleston D. B., and Bohnenstiehl D. R. (2014b). Soundscape variation from a larval perspective: the case for habitat-associated sound as a settlement cue for weakly swimming estuarine larvae, Mar. Ecol. Prog. Ser., 509, 57–70.

Liu K.-K., Atkinson L., Quiñones R. A., and Talaue-McManus L. (2010). Biogeochemistry of Continental Margins in a Global Context, In P. K.-K. Liu, P. L. Atkinson, P. R. Quiñones, and D. L. Talaue-McManus (Eds.), Carbon Nutr. Fluxes Cont. Margins, Global Change – The IGBP Series, Springer Berlin Heidelberg, p. 3-24.

Luczkovich J. J., Mann D. A., and Rountree R. A. (2008). Passive Acoustics as a Tool in Fisheries Science, Trans. Am. Fish. Soc., 137, 533–541. doi:10.1577/T06-258.1

McWilliam J. N., and Hawkins A. D. (2013). A comparison of inshore marine soundscapes, J. Exp. Mar. Biol. Ecol., 446, 166-176.

Nystuen J. A. (1986). Rainfall measurements using underwater ambient noise, J. Acoust. Soc. Am., 79, 972-982. doi:10.1121/1.393695

Pijanowski B. C., Villanueva-Rivera L. J., Dumyahn S. L., Farina A., Krause B. L., Napoletano B. M., Gage S. H., et al. (2011). Soundscape ecology: the science of sound in the landscape, BioScience, 61, 203–216.

Pilowsky I., and Spence N. (1975). Patterns of illness behaviour in patients with intractable pain, J. Psychosom. Res., 19, 279-287.

Pinkowski B. (1997). Principal component analysis of speech spectrogram images, Pattern Recognit., 30, 777–787. doi:10.1016/S0031-3203(96)00103-3

Radford C., Jeffs A., Tindle C., and Montgomery J. C. (2008). Resonating sea urchin skeletons create coastal choruses, Mar Ecol Prog Ser, 362, 37-43.

Radford C., Stanley J., Tindle C., Montgomery J., and Jeffs A. (2010). Localised coastal habitats have distinct underwater sound signatures, Mar Ecol Prog Ser, 401, 21-29.

Seytre C., and Francour P. (2009). The Cap Roux MPA (Saint-Raphaël, French Mediterranean): changes in fish assemblages within four years of protection, ICES J. Mar. Sci. J. Cons., 66, 180-187.

Simard Y., Roy N., Gervaise C., & Giard S. (2015). Analysis and modeling of 255 ship source levels from an acoustic observatory along St. Lawrence Seaway. J Acoust Soc Am, in press.

Sousa-Lima R. S., Fernandes D. P., Norris T. F., and Oswald J. N. (2013). A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals: 2013 state-of-the-industry. Acoust. Underw. Geosci. Symp. RIO Acoust. 2013 IEEEOES, 1–9. . Presented at the Acoustics in Underwater Geosciences Symposium (RIO Acoustics), 2013 IEEE/OES. doi:10.1109/RIOAcoustics.2013.6683984

Urick J. R. (1983). Principles of underwater sound, N. Y. McGraw-Hill Book Co.

Wagner M., and Castner D. G. (2001). Characterization of adsorbed protein films by time-of- flight secondary ion mass spectrometry with principal component analysis, Langmuir, 17, 4649-4660.

Watanabe M., Sekine M., Hamada E., Ukita M., and Imai T. (2002). Monitoring of shallow sea environment by using snapping shrimps, Water Sci. Technol., 46, 419-424.

Wenz G. M. (1962). Acoustic ambient noise in the ocean: spectra and sources, J. Acoust. Soc. Am., 34, 1936-1956.

Wu H., Siegel M., Khosla P. (1998). Vehicle sound signature recognition by frequency vector principal component analysis, Instrum. Meas. Technol. Conf. IMTC98, IEEE, 429-434.