Algorithme primal-dual de points intérieurs pour l’estimation pénalisée des cartes d’abondances en imagerie hyperspectrale

Algorithme primal-dual de points intérieurs pour l’estimation pénalisée des cartes d’abondances en imagerie hyperspectrale

Emilie Chouzenoux Saïd Moussaoui  Maxime Legendre  Jérôme Idier 

Université Paris-Est Marne-la-Vallée, LIGM (UMR CNRS 8049)

UNAM Université, Ecole Centrale de Nantes CNRS, IRCCyN (UMR CNRS 6597)

Corresponding Author Email: 
emilie.chouzenoux@univ-mlv.fr
Page: 
35-59
|
DOI: 
https://doi.org/10.3166/TS.30.35-59
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The estimation of abundance maps in hyperspectral imaging requires the resolution of an optimization problem under non-negativity and sum to one constraints. Assuming that the spectral signatures of the image components have been previously determined by an endmember extraction algorithm, we propose in this paper a primal-dual interior point algorithm for the estimation of their fractional abundances. In comparison with the reference method FCLS, our algorithm has the advantage of a reduced computational cost. Moreover, it allows to deal with a penalized criterion favoring the spatial smoothness of abundance maps. The performances of the proposed approach are discussed with the help of synthetic and real examples.

RÉSUMÉ

L’estimation des cartes d’abondances en imagerie hyperspectrale nécessite de ré-soudre un problème d’optimisation sous des contraintes de positivité et d’additivité. Nous nous plaçons dans le cadre où les spectres des composants présents au sein de l’image ont été pré-alablement estimés par un algorithme d’extraction des pôles de mélange. Afin de réduire le temps de calcul, nous proposons un algorithme rapide de points intérieurs de type primal-dual pour l’estimation de ces cartes. En comparaison avec la méthode de référence FCLS, l’algorithme proposé présente l’avantage d’un coût de calcul réduit. Un second avantage est de pouvoir traiter le cas d’un critère pénalisé favorisant la régularité spatiale des cartes d’abondances. Des exemples sur des données synthétiques et réelles illustrent les performances de cet algorithme.

1. Introduction
2. Optimisation Sous Contraintes Pour L’estimation Des Cartes D’abondances
3. Mise En Œuvre De L’algorithme Primal-Dual
4. Résultats Expérimentaux
5. Conclusion
  References

Armand P., Gilbert J. C., Jan-Jégou S. (2000). A feasible BFGS interior point algorithm for solving strongly convex minimization problems. SIAM Journal on Optimization, vol. 11, p. 199-222.

Bioucas-Dias J. M., Plaza A. (2011). An overview on hyperspectral unmixing: geometrical, statistical, and sparse regression based approaches. In Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’11). Vancouver, Canada.

Boyd S., Vandenberghe L. (2004). Convex optimization. New York, Cambridge University Press.

Bro R., De Jong S. (1997). A fast non-negativity constrained least squares algorithm. Journal of Chemometrics, vol. 11, p. 393–401.

Chang C.-I. (2007). Hyperspectral data exploitation. Wiley Interscience.

Chouzenoux E., Moussaoui S., Idier J. (2011). Efficiency of linesearch strategies in interior point methods for linearly constrained signal restoration. In Proceedings of the IEEE workshop on Statistical Signal Processing Workshop (SSP’11), p. 101-104. Nice, France.

Clark R. N., Swayze G. A., Gallagher A., King T. V., Calvin W. M. (1993). The U.S. geological survey digital spectral library: version 1 (0.2 to 3.0 µm). U.S. Geological Survey, Open File Rep. 93-592.

Conn A., Gould N., Toint P. L. (1996). A primal-dual algorithm for minimizing a nonconvex function subject to bounds and nonlinear constraints. In G. Di Pillo, F. Giannessi (Eds.), Nonlinear optimization and applications, 2e éd.. Kluwer Academic Publishers.

Dixon L. C. W. (1973). Conjugate directions without linear searches. SIAM Journal on Applied Mathematics, vol. 11, no 3, p. 317-328.

Dobigeon N., Moussaoui S., Coulon M., Tourneret J., Hero A. O. (2010). Algorithmes bayé-siens pour le démélange supervisé, semi-supervisé et non supervisé d’images hyperspectrales. Traitement du signal, vol. 27, no 1, p. 79–108.

Dobigeon N., Tourneret J.-Y., Chang C.-I. (2008). Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery. IEEE Transactions on Signal Processing, vol. 56, no 7, p. 2684–2695.

El-Bakry A. S., Tapia R. A., Tsuchiya T., Zhang Y. (1996, June). On the formulation and theory of the newton interior-point method for nonlinear programming. Journal of Optimization Theory and Applications, vol. 89, p. 507–541.

Forsgren A., Gill P. E. (1998, April). Primal-dual interior methods for nonconvex nonlinear programming. SIAM Journal on Optimization, vol. 8, p. 1132-1152.

Forsgren A., Gill P. E., Wright M. H. (2002). Interior methods for nonlinear optimization. SIAM Review, vol. 44, no 4, p. 525-597.

Geman D., Reynolds G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, p. 367–383.

Geman D., Yang C. (1995). Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing, vol. 4, p. 932–946.

Green R., et al. (1998). Imaging spectroscopy and the airborne visible/infrared imaging (AVIRIS) spectrometer. Remote Sensing of Environment, vol. 65, p. 227–248.

Healey G., Slater D. (1999). Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no 6, p. 2706-2716.

Heinz D. C., Chang C.-I. (2001). Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no 3, p. 529 -545.

Huck A., Guillaume M., Blanc-Talon J. (2010). Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no 6, p. 2590-2602.

Idier J. (2001). Convex half-quadratic criteria and interacting auxiliary variables for image restoration. IEEE Transactions on Image Processing, vol. 10, no 7, p. 1001-1009.

Johnson C. A., Seidel J., Sofer A. (2000, April). Interior-point methodology for 3-D PET reconstruction. IEEE Transactions on Medical Imaging, vol. 19, no 4, p. 271–285.

Keshava N., Mustard J. F. (2002, January). Spectral unmixing. IEEE Signal Processing Magazine, vol. 19, no 1, p. 44 -57.

Lawson C. L., Hanson R. J. (1974). Solving least-squares problems. Englewood Cliffs, New Jersey, Prentice-Hall.

Moussaoui S., Hauksdóttir H., Schmidt F., Jutten C., et al. (2008, June). On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing, vol. 71, no 10–12, p. 2194–2208.

Nascimento J. M. P., Bioucas-Dias J. M. (2005, April). Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no 4, p. 898–910.

Parente M., Plaza A. (2010, June). Survey of geometric and statistical unmixing algorithms for hyperspectral images. In Proceedings of the IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS’10). Reykjavik, Iceland.

Plaza A., Martinez P., Perez R., Plaza J. (2004, March). A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no 3, p. 650–663.

Scott J. R. (1997). Remote sensing: The image chain approach. New York: Oxford Univ. Press.

Settle J. J., Drake N. A. (1993). Linear mixing and the estimation of ground cover proportions. International Journal of Remote Sensing, vol. 14, no 6, p. 1159-1177.

Van der Vorst H. A. (1992, March). BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific Computing, vol. 13, p. 631–644.

Vane G., Green R. O., Chrien T. G., Enmark H. T., Hansen E. G., Porter W. M. (1993). The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, vol. 44, no 2-3, p. 127–143.

Van Loan C. F. (2000). The ubiquitous Kronecker product. Journal of Computational and Applied Mathematics, vol. 123, no 1-2, p. 85–100.

Wright M. H. (1992, January). Interior methods for constrained optimization. Acta Numerica, vol. 1, p. 341-407.

Wright M. H. (1994). Some properties of the Hessian of the logarithmic barrier function. Mathematical Programming, vol. 67, no 2, p. 265-295.

Wright M. H. (1998). Ill-conditioning and computational error in interior methods for nonlinear programming. SIAM Journal on Optimization, vol. 9, no 1, p. 84-111.