Une méthode de pré-traitement automatique pour le débruitage des images sous-marines - Automatic Underwater Image Denoising

Une méthode de pré-traitement automatique pour le débruitage des images sous-marines

Automatic Underwater Image Denoising

 

Stéphane Bazeille Isabelle Quidu  Luc Jaulin  Jean-Philippe Malkasse 

Laboratoire E3I2 EA-3876, ENSIETA, 2 rue François Verny, 29806 BREST cedex 9, France

Thales Underwater Systems S.A S. Route de Sainte Anne du Portzic Site Amiral Nomy CS 43814 29238 BREST cedex 3, France

Page: 
45-54
|
Received: 
30 November 2006
|
Accepted: 
N/A
|
Published: 
30 April 2008
| Citation

OPEN ACCESS

Abstract: 

A novel pre-processing filter is proposed for underwater image restoration. Because of specific transmission properties of light in the water, underwater image suffers from limited range,non uniform lighting, low contrast, color diminished, important blur… Today pre-processing methods typically only concentrates on non uniform lighting or color correction and often require additional knowledge of the environment. The algorithm proposed in this paper is an automatic algorithm to pre-process underwater images. It reduces underwater perturbations, and improves image quality. It is composed of several successive independent processing steps which correct non uniform illumination, suppress noise, enhance contrast and adjust colors. Performances of filtering will be assessed using an edge detection robustness criterion.

Résumé

L'obstacle majeur dans le traitement des images sous-marines résulte des phénomènes d'absorption et de diffusion dus aux propriétés optiques particulières de la lumière dans l'eau. Ces deux phénomènes auxquels s'ajoute le problème de turbidité, impose de travailler sur des images très bruitées, avec souvent, une illumination non uniforme, des contrastes faibles, des couleurs atténuées… Cet article présente une nouvelle méthode automatique de pré-traitement des images sous marines. L'algorithme proposé qui ne nécessite ni paramétrage manuel ni information a priori, permet d'atténuer les défauts précédemment cités et d'améliorer de façon significative la qualité des images. L'éclairage, le bruit, les contrastes puis les couleurs sont corrigés séquentiellement.

Keywords: 

Image processing, contrast enhancement, denoising, color correction

Mots clés

Traitement d'image, rehaussement de contraste, débruitage, compensation colorimétrique

1. Introduction
2. Les Dégradations Spécifiques Dues Au Milieu Marin
3. Description De L'algorithme Global
4. Détails Des Algorithmes Utilisés
5. Démonstration Et Quantification Des Résultats
6. Conclusion Et Perspectives
  References

[1] A. T. OLMOS ANTILLON, Detecting underwater man-made objects in unconstrained video image, PhD thesis, Heriott Watt University, Department of Computing and Electrical Engineering, 2002.

[2] J. AHLEN, Color correction of underwater images using spectral data, PhD thesis, Uppsala University, Centre for Image Analysis, 2005.

[3] R. GARCIA, T. NICOSEVICI, X. CUFI, On the way to solve lighting problems in underwater imaging, IEEE OCEANS 02, 2002.

[4] L. SENDUR, I. W. SELESNICK, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Trans. on Signal Processing, 2002.

[5] P. PERONA, J.MALIK, Scale space and edge detection using anisotropic diffusion, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990.

[6] A. ARNOLD-BOS, J. P. MALKASSE, G. KERVERN, Towards a model-free denoising of underwater optical image, IEEE OCEANS 05, 2005.

[7] M. ARREDONDO, K. LEBART, A methodology for the systematic assessment of underwater video processing algorithms, IEEE OCEANS 05, 2005.

[8] J. S. JAFFE, Computer modeling and the design of optimal underwater imaging systems, IEEE Journal of Oceanic Engineering, 1990.

[9] B. L. MCGLAMERY, A computer model for underwater camera systems, SPIE Ocean Optics, 1979.

[10] D. N. SIDOROV, A. C. KOKARAM, Suppression of moiré patterns via spectral analysis, Proceedings of SPIE in Visual Communications and Image Processing, 2002.

[11] W. H. LIAO, D. Y. LI, Homomorphic processing techniques for nearinfrared images, Acoustics, Speech, and Signal Processing, 2003.

[12] A. ARNOLD-BOS, J. P. MALKASSE, G. KERVERN, A preprocessing framework for automatic underwater images denoising, European Conference on Propagation and Systems, 2005.

[13] A. F. ABDELMOUR, I. W. SELESNICK, Symmetric Nearly Orthogonal and Orthogonal Nearly Symmetric Wavelets, Research Report, 2003.

[14] D. L. DONOHO, I. M. JOHNSTONE, Threshold selection for wavelet shrinkage of noisy data, Proceedings of the 16th Annual International Conference of the IEEE, 1994.

[15] D. L. DONOHO, I. M. JOHNSTONE, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81(3) :425.455, 1994.

[16] A. BUADES, B. COLL, J. M. MOREL, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation (SIAM interdisciplinary journal), 2005.

[17] P. KOVESI, Phase preserving denoising of images, Proceeding of the Australian Pattern Recognition Society Conference, 1999.

[18] W. K. PRATT, Digital Image Processing, John Wiley & Sons, 1991.

[19] J. L. STARCK, F. MURTAGH, E. J. CANDÉS, D. L. DONOHO, The curvelet transform for image denoising, IEEE Transactions on image processing, 2002.

[20] J. L. STARCK, E. J. CANDÉS, D. L. DONOHO, Gray and color image contrast enhancement by the curvelet transform, IEEE Transactions on image processing, 2003.

[21] Z. LIU, Y. YU , K. ZHANG, H. HUANG, Underwater image transmission and blurred image restoration, SPIE Journal of optical Engineering, 2001.