Traitement et analyse quantitative de séquences IRM cardiaques marquées - Processing and quantitative analysis of tagged cardiac MRI sequences

Traitement et analyse quantitative de séquences IRM cardiaques marquées

Processing and quantitative analysis of tagged cardiac MRI sequences

Aymeric Histace Christine Cavaro-Ménard  Vincent Courboulay  Michel Ménard 

Laboratoire d'Ingénierie des Systèmes Automatisés (CNRS-FRE 2656), Université d'Angers,62, Avenue Notre Dame du Lac, 49000 Angers, France

Laboratoire Informatique Image Interaction, Université de La Rochelle, Pôle Sciences et Technologie, Av Michel Crépeau,17042 La Rochelle Cedex 1 – FRANCE

Corresponding Author Email: 
aymeric.histace@univ-angers.fr
Page: 
125-143
|
Received: 
8 July 2005
|
Accepted: 
N/A
|
Published: 
30 April 2006
| Citation

OPEN ACCESS

Abstract: 

The noninvasive evaluation of the cardiac function presents a great interest for the diagnosis of cardiovascular diseases. Cardiac tagged MRI allows the measurement of anatomical and functional myocardial parameters. This protocol generates a dark grid which is deformed with the myocardium. As a consequence, the tracking of the grid allows the displacement estimation in the myocardium. The work described in this paper aims to automate the myocardial contours detection and the following of the grids of tags on Short-Axis time sequences, in order to firstly optimize the 2D+T study of the parietal contractions and secondly make possible its clinical use. The method we have developed for endocardial and epicardial contours detection is based on the use of texture analysis and active contours models. Texture analysis allows us to define energy maps more efficient than those usually used in active contours methods where attractor is often based on gradient and which were useless in our case of study. The follow-up of the grid of tags that we have implemented is based on a grid of active contours (B-snakes) which part of the energy is issued from a particular selective diffusion process which leading equation is based on the recent work of [8]. The results obtained with our method is fully automatic and correct on Short-Axis sequences, when previous works on cardiac tagged MR images analysis always used manual contours detection.

Résumé

L'évaluation non invasive de la fonction cardiaque présente un intérêt majeur pour le diagnostic et le suivi de pathologies cardio-vasculaires. L'IRM cardiaque marquée permet de mesurer des paramètres anatomiques et fonctionnels du myocarde. Ce protocole fait apparaître sur les images des séquences temporelles cardiaques Petit-Axe (PA) une grille se déformant avec le myocarde. Le suivi de cette grille permet ainsi d'estimer le déplacement intramyocardique. L'objectif de notre étude est de rendre robuste le suivi automatique de la grille de tags sur les séquences PA afin de mener une analyse quantitative 2D+T de la fonction contractile du Ventricule Gauche (VG). La méthode que nous avons développée dans ce but, utilise un modèle de contour actif sous forme de grille dont l'énergie image se construit grâce à une diffusion sélective permettant la sauvegarde de l'information de tag au détriment du reste sur chacune des images PA extraites des séquences IRM cardiaques marquées. Cette approche, couplée à une détection automatique des contours du VG sur ces mêmes images, permet l'obtention de résultats quantitatifs (paramètres cliniques) satisfaisants à la fois en terme de précision, de robustesse, de reproductibilité et de rapidité.

Keywords: 

Detection and follow-up, robustness, reproducibility, diffusion, MRI, Tagging, quantitative study

Mots clés

Détection et suivi, robustesse, reproductibilité, diffusion, IRM, Tagging, étude quantitative

1. Introduction
2. Détection Des Contours Endocardique Et Épicardique Du VG Entre La Télédiastole Et La Télésystole
3. Détection Et Suivi De La Grille De Tags
4. Estimation Quantitative Des Champs De Déplacement Et De Déformation Cardiaques Ventriculaires Gauches
5. Discussion
  References

[1] C. ALLOUCHE, Automatic, real-time processing of SPAMM-tagged myocardium images with a software improved tag resolution. In Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM'01), Glasgow (Royaume-Uni), 2001.

[2] A.A. AMINI, Y. CHEN, R.W. CURWEN, V. MANI, and J. SUN, Coupled B-snake grids and constrained thin-plate splines for analysis of 2D tissue deformations from tagged MRI. IEEE Transaction on Medical Imaging, 17(3):344-356, 1998.

[3] J. BOGAERT and F. RADEMAKERS, Regional nonuniformity of normal adult human left ventricle. American Journal of Physiology: Heart and Circulatory Physiology, 280:610-620, 2001.

[4] R. CHANDRASHEKARA, R.H. MOHIADDIN, and D. RUECKERT, Analysis of myocardial motion in tagged MR images using nonrigid image registration. In Medical Image Understanding and Analysis, Porthmouth, 2002.

[5] N.R. CLARK, N. REICHEK, P. BERGEY, E.A. HOFFMAN, D. BROWNSON, L. PALMON, and L. AXEL, Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation, (84):67-74, 1991.

[6] P. CLARYSSE, L. BRACOUD, P. CROISILLE, and I.E. MAGNIN, Integrated quantitative analysis of tagged magnetic resonance images. FIMH-LNCS, 2230:69-75, 2001.

[7] L.D. COHEN and I. COHEN, Finite element methods for active contour models and balloons for 2d and 3d images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:1131-1147, 1993.

[8] V. COURBOULAY, A. HISTACE, M. MÉNARD, and C. CAVAROMÉNARD, Une approche informationnelle du traitement d'image. In Actes du congrès TAIMA'05 (Traitement et Analyse d'Images : Méthodes et Applications, 2005).

[9] V. COURBOULAY, M. MÉNARD, M. EBOUEYA, and P. COURTELLEMONT, Une nouvelle approche du filtrage linéaire optimal dans le cadre de l'information physique extrême. In RFIA 2002, pages 897-905, Janvier 2002.

[10] J. DECLERCK, J. FELDMAR, and N. AYACHE, Definition of a four-dimensional continuous planispheric transformation for the tracking and the analysis of left-ventricle motion. Medical Image Analysis, 2:197-213, 1998.

[11] T. DENNEY, Estimation and detection of myocardial tags in MR images without user-defined myocardial contours. IEEE Transactions on Medical Imaging, 18(4):330-344, 1999.

[12] R. DERICHE and O. FAUGERAS, Les edp en traitements des images et visions par ordinateur. Traitement du Signal, 13(6):551-578, 1996.

[13] L. DOUGHERTY, J. ASMUTH, A. BLOM, L. AXEL, and R. KUMAR, Validation of an optical flow method for tag displacement estimation. IEEE Transactions on Medical Imaging, 18(4):359-363, 1999.

[14] B.R. FRIEDEN, Physics from Fisher Information. Cambridge University Press, 1998.

[15] M. GROOT-KOERKAMP, G. SNOEP, A. MUIJTJENS, and G. KEMERINK, Improving contrast and tracking of tags in cardiac magnetic resonance images. Magnetic Resonance in Medicine, 41:973-982, 1999.

[16] S. GUPTA and J. PRINCE, On variable brightness optical flow for tagged MRI. In Kluwer, editor, Information Processing in Medical Imaging, pages 323-334, Dordrecht (Pays-Bas), 1995. Kluwer.

[17] S. GUPTA, J. PRINCE, and S. ANDROUTSELLIS-THEOTOKIS, Bandpass optical flow for tagged MRI. In International Conference on Image Processing, volume 3, pages 364-367, San Diego CA, 1997.

[18] M. GUTTMAN, J. PRINCE, and E. MCVEIGH, Tag and contour detection in tagged MR images of the left ventricle. IEEE Transactions on Medical Imaging, 13(1):74-88, 1994.

[19] M. GUTTMAN, E. ZERHOUNI, and E. MCVEIGH, Analysis of cardiac function from MR images. IEEE Computer Graphics and Applications, 17(1):30-38, 1997.

[20] I. HABER, R. KIKINIS, and C.F. WESTIN, Phase-driven finite elements model for spatio-temporal tracking in tagged mri. In Proceedings of Fourth International Conference On Medical Image Computing and Computer Assisted Intervention (MICCAI'01), pages 1352-1353, 2001.

[21] A. HISTACE, Détections et suivis robustes de structures dans des séquences d'images: application à l'IRM cardiaque marquée. Thèse de doctorat, Université d'Angers, 2004.

[22] M. KASS, A. WITKIN, and D. TERZOPOULOS, Snakes: Active contour models. International Journal of Computer Vision, 1:321-331, 1988.

[23] D. KRAITCHMAN, A. YOUNG, C. CHANG, and L. AXEL, Semiautomatic tracking of myocardial motion in MR tagged images. IEEE Transactions on Medical Imaging, 14(3):422-433, 1995.

[24] C. KRAMER, N. REICHEK, V. FERRARRI, T. THEOBALD, J. DAWSON, and L. AXEL, Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation, 90:186-194, 1994.

[25] J. KUIJER, J. MARCUS, M. GÖTTE, A. VAN ROSSUM, and R. HEETHAAR, Three dimensional myocardial strains at end systole and during diastole in the left ventricle of normal humans. Journal of Cardiovascular Magnetic Resonance, 4(3):341-351, 2002.

[26] S. KUMAR and D. GOLDGOF. Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images. IEEE Transactions on Medical Imaging, 13(1):122-132, 1994.

[27] J. MILLES, P. CLARYSSE, A. VAN SUSTEREN, P. CROISILLE, I.E. MAGNIN, and T. ARTS, Automatic 2d segmentation of the left ventricle in tagged cardiac MRI using motion information. In Actes du congrès ISBI (International Symposium on Biomedical Imaging), Arlington, VA, USA, 2004.

[28] C. MOORE, C. LUGO-OLIVIERI, E. MCVEIGH, and E. ZERHOUNI, Three dimensional systolic strain patterns in the normal human left ventricle: Characterization with tagged mr imaging. Radiology, 214(2):453-466, 2000.

[29] E. NAGEL, M. STUBER, B. BURKHARD, S. FISHER, M. SCHEIDEGGER, P. BOESIGER, and O. HESS, Cardiac rotation and relaxation in patients with aortic valve stenosis. European Heart Journal, 21:582-589, 2000.

[30] N.F. OSMAN, E.R. MC VEIGH, and J.L. PRINCE, Imaging heart motion using Harmonic Phased MRI (HARP). IEEE Transactions on Medical Imaging, 19:186-202, 2000.

[31] J. PARK, D. METAXAS, A.A. YOUNG, and L. AXEL, Deformable models with parameters functions for cardiac motion analysis from tagged MRI data. IEEE Transactions on Medical Imaging, 15(3):278-289, 1996.

[32] C. PETITJEAN, Recalage non rigide d'images par approches variationnelles statistiques. Application à l'analyse et à la modélisation de la fonction myocardique en IRM. Thèse de doctorat, Université René Descartes-Paris V, 2003.

[33] C. PETITJEAN, N. ROUGON, and P. CLUZEL, Assessment of myocardial function: A review of quantification methods and results using tagged MRI. Journal of Cardiovascular Magnetic Resonance, 7(2):501-516, 2005.

[34] C. PETITJEAN, N. ROUGON, F. PRÊTEUX, Ph. CLUZEL, and Ph. GRENIER, A non rigid registration approach for measuring myocardial contraction in tagged mri using exclusive f-information. In Proceedings International Conference on Image and Signal Processing (ICISP'2003), Agadir, Morocco, 25-27 June 2003.

[35] J.L. PRINCE and E. MCVEIGH, Motion estimation from tagged MR image sequences. IEEE Transactions on Medical Imaging, 11(2):238-249, 1992.

[36] P. RADEVA, A. AMINI, and J. HUANG, Deformable B-solids and implicit snakes for 3D localization and tracking of SPAMM MRI data. Computer Vision and Image Understanding, 66:163-178, 1997.

[37] N. ROUGON, C. PETITJEAN, F. PRÊTEUX, P. CLUZEK, and P. GRENIER, A non-rigid registration approach for quantifying myocardial contraction in tagged MRI using generalized information measures. Medical Image Analysis, 9:353-375, 2005.

[38] O. BAYLOU, P. BORDA M., TEREBES, R. LAVIALLE, Mixed anisotropic diffusion. In Proceedings of the 16th International Conference on Pattern Recognition, volume 3, pages 1051-4651, 2002.

[39] S. URAYAMA, T. MATSUDA, N. SUGIMOTO, S. MIZUTA, N. YAMADA, and C. UYAMA, Detailed motion analysis of the left ventricular myocardium using an MR tagging method with a dense grid. Magnetic Resonance in Medicine, 44(73-82), 2000.

[40] A. YOUNG, C. KRAMER, V. FERRARI, L. AXEL, and N. REICHEK, Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation, 90(854-867), 1994.

[41] A.A. YOUNG and L. AXEL, Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization. A model-based approach. Radiology, (185):241-247, 1992.

[42] A.A. YOUNG, D.L. KRAITCHMANN, L. DOUGHERTY, and L. AXEL, Tracking an finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging,14(3):413-421, 1995.

[43] S. ZHANG, M. DOUGLAS, L. YAROSLAVSKY, R. SUMMERS, V. DILSIZIAN, L. FANANAPAZIR, and S. BACHARACH, A fourier based algorithm for tracking SPAMM tags in gated magnetic resonance cardiac images. Medical Physics, 32(8):1359-1369, 1996.