Heat and Mass Transfer of Williamson Nanofluid with the Effects of Viscous Dissipation and Chemical Reaction

Heat and Mass Transfer of Williamson Nanofluid with the Effects of Viscous Dissipation and Chemical Reaction

Ganji NarenderNagula Manjula Kamatam Govardhan | M. N. Rajashekar

Department of Humanities & Science (Mathematics), CVR College of Engineering, Hyderabad, Telangana State, India

Department of Humanities & Science (Mathematics), Sreenidhi Institute of Science and Technology, Hyderabad, India

Department of Mathematics, GITAM University Hyderabad, Telangana State, India

Department of Mathematics, JNTUH College of Engineering Jagtial, Telangana State, India

Corresponding Author Email: 
gnriimc@gmail.com
Page: 
108-113
|
DOI: 
https://doi.org/10.18280/ti-ijes.630115
Received: 
2 April 2019
|
Accepted: 
21 April 2019
|
Published: 
31 March 2019
| Citation

OPEN ACCESS

Abstract: 

D A numerical analysis is performed for the mathematical model of boundary layer flow of nanofluids. Heat and mass transfer are analyzed for an incompressible fluid with viscous dissipations and chemical reaction past a stretching surface. An appropriate set of similarity transformations are used to transform the governing partial differential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is solved numerically by using Adams-Moultan method along with shooting method. Furthermore, we compared our results with the existing results for especial cases which are in an excellent agreement. The numerical values obtained for various non-dimensional physical quantities together with velocity, temperature and concentration profiles are presented through graphs and tables. The effects of different physical parameters on the flow and heat transfer characteristics are discussed in detail.

Keywords: 

Williamson nanofluid, stretching surface, viscous dissipation, chemical reaction parameter, heat and mass transfer

1. Introduction
2. Problem Description and Mathematical Formulation
3. Dimensionless Form of the Governing Equations
4. Numerical Procedure
5. Code Validation
6. Results and Discussion
7. Conclusion
Acknowledgement
  References

[1]    Prandtl L. (1904). Uber flussigkeitsbewegung bei sehr kleiner reibung. Verhandl. 3rd Int. Maths. Kongr, Heideberg, Leipzig, 1905.

[2]    Motsumi GT, Makinde O. (2012). Effects of thermal radiation and viscous dissipation on boundary layer ow of nanofluids over a permeable moving at plate. Physica Scripta 86(4): 045003. https://doi.org/10.1088/0031-8949/86/04/045003

[3]    Ibrahim W, Makinde OD. (2013). The effect of double stratification on boundary layer flow and heat transfer of nanofluid over a vertical plate. Computers & Fluids 86: 433-441. https://doi.org/10.1016/j.compfluid.2013.07.029

[4]    Makinde OD. (2012). Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating. Applied Mathematics and Mechanics 33(12): 1545-1554.

[5]    Daniel Makinde O. (2013). Computational modeling of nanofluids ow over a convectively heated unsteady stretching sheet. Current Nanoscience 9(5): 673-678. https://doi.org/10.2174/15734137113099990068

[6]    Sakiadis B. (1961). Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal 7(1): 26-28. https://doi.org/10.1002/aic.690070108

[7]    Choi SUS, Eastman JA. (1995). Enhancing thermal conductivity of fluids with nanoparticles. https://www.researchgate.net/publication/236353373_Enhancing_thermal_conductivity_of_fluids_with_nanoparticles, accessed on January 1995. 

[8]    Malvandi A, Ganji DD. (2014). Effects of nanoparticle migration on force convection of alumina/water nanofluid in a cooled parallel-plate channel. Adv. Powder Technol 25(4): 1369-1375. https://doi.org/10.1016/j.apt.2014.03.017

[9]    Khanafer K, Vafai K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer 54(19): 4410-4428. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048

[10]    Masuda H, Ebata A, Teramae K, Hishinuma N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles dispersion of Al2O3; SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7(4): 227-233. https://doi.org/10.2963/jjtp.7.227

[11]    Buongiorno J. (2006). Convective transport in nanofluids. Journal of Heat Transfer 128(3): 240-250. https://doi.org/10.1115/1.2150834

[12]    Mehrez Z, Bouterra M, El Cafsi A, Belghith A. (2013). Heat transfer and entropy generation analysis of nanofluids flow in an open cavity. Computers & Fluids 88: 363-373. https://doi.org/10.1016/j.compfluid.2013.09.026

[13]    Vajravelu K. (2001). Viscous flow over a nonlinearly stretching sheet. Applied mathematics and computation. Applied Mathematics and Computation 124(3): 281-288. https://doi.org/10.1016/S0096-3003(00)00062-X

[14]    Gebhart B, Mollendorf J. (1969). Viscous dissipation in external natural convection flows. J. Fluid Mechanics, 38(01): 97-107. https://doi.org/10.1017/S0022112069000061

[15]    Duwairi HM. (2005). Viscous and Joule heating effects on forced convection ow from radiate isothermal porous surfaces. Int. J. Numerical Methods for Heat & Fluid Flow 15(5): 429-440. https://doi.org/10.1108/09615530510593620

[16]    Nadeem S, Hussain ST. (2014). Flow and heat transfer analysis of Williamson nanofluid. Appl Nanosci. 4(8): 1005–1012.