Fuels from Biomass

Fuels from Biomass

Ferruccio Trifirò

Dipartimento di Chimica Industriale “Toso Montanari” Viale Risorgimento N.4 40136 Bologna, Italy

Corresponding Author Email: 
ferruccio.trifiro@unibo.it
Page: 
86-93
|
DOI: 
https://doi.org/10.18280/ti-ijes.630112
Received: 
25 January 2019
|
Accepted: 
22 March 2019
|
Published: 
31 March 2019
| Citation

OPEN ACCESS

Abstract: 

Against the climate change due to greenhouse gas emissions, one of the several solutions is the use of biofuels. Biofuels are biomethane, biodiesel, bioethanol, GTL, DME, biobutanol, biohydrogen and BTL. Biomethane is produced by anaerobic fermentation of organic wastes. Bioethanol is produced from fermentation of sugar crops but also from lignocellulosic wastes. Biobutanol is produced by fermentation of food crops or from lignocellulosic wastes. GTL and DME and biohydrogen are produced essentially by gasification of biomass. However, agricultural and forest waste and energy crops that make up marginal land should be used as biomass.

Keywords: 

biofuels, biomethan, biodiesel, bioethanol, biobutanol, biohydrogen

1. Introduction
2. From Bonfire to Biorefineries
3. Energy from Biomass
4. Biofuels against Climate Changes
5. Conclusions
  References

[1]    Cuhum HL, Overend RP. (2001). Biomass and renewable fuels. Fuel Processing Technology 71(1-3): 187-195. https://doi.org/10.1016/S0378-3820(01)00146-1

[2]    Catalán-Martínez D, Domine ME, Serra JE. (2018). Liquid fuels from biomass: An energy self-sustained process integrating H2 recovery and liquid refining. Fuel 212: 353-363. https://doi.org/10.1016/j.fuel.2017.10.014

[3]    Bioenergy (Biofuels and biomass). https://www.eesi.org/topics/bioenergy-biofuels-biomass/description

[4]    European Commission (2015). Workshop “Integrated biorefineries and innovations in the optimal use of biomass” https://ec.europa.eu/research/bioeconomy/pdf/workshop_on_optimal_use_of_biomass_integrated_biorefineries_10Dec2015.pdf

[5]    Qureshi N, Hodge DB, Vertes AA. (2014). Integrated biochemical processes for liquid biofuels. Elsevier.

[6]    McKendry P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 83(1): 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3

[7]    What is biomass? RE Energy Holding. https://www.reenergyholdings.com/renewable-energy /what-is-biomass

[8]    Trifirò F. (2016). Carburanti alternativi per contrastare i cambiamenti climatici e l’inquinamento delle città. La Chimica e l’Industria News Letters 3(1).

[9]    Anniversary - Climate Action is More Urgent than Ever. https://unfccc.int/ 

[10]    COP21 Decision. https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21/cop-21-decisions

[11]    European Commission (2013). EU launches clean fuel strategy. europa.eu/rapid/press-release_IP-13-40_en.htm

[12]    Biomasse utilizzabili per la produzione di biogas (2009). http://www.nextville.it/Biogas/559/Da_quali_biomasse 

[13]    La tecnologia del biogas made in Germany. http://www.envitec-biogas.it/

[14]    Proesa Technology. https://www.bio.org/sites/default/files/files/beta%20renewables%20proesa%20technology%20june%22013_bio_michele_rubino.pdf

[15]    Cobror R. (2012). La produzione industriale di bioetanolo. Un passo deciso verso la Bioeconomia. La Chimica e l’Industria 3: 80-82.

[16]    Rozzi R, Trifirò F. (2007). Chimica nella vita quotidiana: l’olio diesel il top dei prodotti chimici. La Chimica el’ Industria 89(7): 162-168.

[17]    Un nuovo piano di sviluppo per Gela. https://www.eni.com/it_IT/media/dossier/nuovo-piano-sviluppo-gela.page 

[18]    When did second generation green diesel demo plant project start? https://www.eni.com/en_IT/results.page?question=when+di+second+generation+green+diesel+demo+plant+project+start 

[19]    Bioraffinerie Eni (2016). https://www.eni.com/it_IT/innovazione/piattaforme-tecnologiche/bio-refinery.page

[20]    Perego C, Ricci M. (2012). Diesel from Biomass. Catal. Sci. Technol. 2: 1776-1786.

[21]    Trifirò F. (2012). Polo verde a Marghera: Forse parte una nuova chimica. La Chimica e l’Industria 94(9): 86-87.

[22]    Natural gas and its advantages http://www.shell.com/energy-and-innovation/natural-gas/gas-to-liquids.html 

[23]    Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang TY, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW. (2014). Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ. Sci. 7(4): 1500-1524. https://doi.org/10.1039/c3ee43846e

[24]    Basile F, Albertazzi S, Barbera D, Benito P, Einvall J, Brandin J, Fornasari G, Trifirò F, Vaccaria A. (2011). Steam reforming of hot gas from gasified wood and herbaceous biomass. Biomass and Bioenergy 35(1): 116-122. https://doi.org/10.1016/j.biombioe.2011.06.047

[25]    Albertazzi S, Basile F, Trifirò F. (2006). Gas di sintesi da pirolosi e gassificazione di biomassa lignocellulosica. La Chimica e l’Industria 88(2): 64, 69.

[26]    Leadbeater NL, Barnard TM, Stencel LM. (2008). Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heat. Energy & Fuels 22(3): 2005-2008. https://doi.org/10.1021/ef700748t

[27]    McLaren JS. (2008). The economic realities, sustainable opportunities, and technical promises of biofuels. Journal of Agrobiotechnology Management & Economy 11(1): 8-20.

[28]    Napoli F, Olivieri G, Russo ME, Marzocchella A. (2009). Production of biobutanol by clostridium acetobutylicum. Combustion Colloquia IV(2): 1-6.

[29]    Festel GW. (2008). Biofuels economic aspects. Chemical Engineering & Technology 31(5): 715-720. https://doi.org/10.1002/ceat.200700335

[30]    Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA. (2006). Butanol production from corn fiber xylan using Cl0ostridium acetobutlycum. Biotechnol Prog. 22: 673-680.

[31]    Ezeji TC, Qureshi N, Blaschek HP. (2007). Bioproduction of butanol from biomass: From genes to bioreactors. Current Opinion in Biotechnology 18(3): 220-227. https://doi.org/10.1016/j.copbio.2007.04.002

[32]    Durre P. (2007). Biobutanol: An attractive biofuel. Biotechnology Journal 2(12): 1525-1534. https://doi.org/10.1002/biot.200700168

[33]    Atsumi S, Higashide W, Liao JC. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnology 27(12): 1177-1180. https://doi.org/10.1038/nbt.1586

[34]    Olson ES, Sharma RK, Aulich TR. (2004). The higher-alcohols biorefinery: improvement of the catalyst for ethanol conversion. Applied Biochemistry Biotechnology 113-116: 913-932. https://doi.org/10.1385/ABAB:115:1-3:0913

[35]    Wright MM, Brown RC, Boateng AA. (2008). Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofpr 2(3): 229-238. https://doi.org/10.1002/bbb.73

[36]    Chandrasekhar K, Lee YJ, Lee DW. (2015). Biohydrogen production: strategies to improve process efficiency through microbial route. Int. J. Mol. Sci. 16(4): 8266-8293. https://doi.org/10.3390/ijms16048266

[37]    Pandey A, Chang JS, Larroche C. (2913). Bihydrogen. (book) Elsevier. 

[38]    Stocker M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie (International ed. in English) 47(48): 9200-9211. https://doi.org/10.1002/anie.200801476

[39]    Zhang SP, Yan YJ, Li TC, Ren ZW. (2005). Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology 96(5): 545-550. https://doi.org/10.1016/j.biortech.2004.06.015