Human activity simulation: A study on multi-level realism

Human activity simulation: A study on multi-level realism

Quentin Reynaud Nicolas Sabouret Yvon Haradji François Sempé  

QRCI - 63000 Clermont-Ferrand, France

LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay Bât 508, Campus Universitaire, 91405 Orsay, France

EDF R&D, EDF Lab Paris-Saclay 7 Boulevard Gaspard Monge, 91120 Palaiseau, France

François Sempé AE, Paris, France

Corresponding Author Email: 
quentin.reynaud.pro@gmail.com; nicolas.sabouret@limsi.fr; yvon.haradji@edf.fr; sempe.francois@gmail.com
Page: 
197-221
|
DOI: 
https://doi.org/10.3166/RIA.32.197-221
Received: 
|
Accepted: 
|
Published: 
30 April 2018
| Citation

OPEN ACCESS

Abstract: 

In this paper, we present a methodology of human activity simulation, based both on a Multi-Agent System (MAS) and statistical data. We show that the notion of simulation realism (i.e. the proximity with behaviors observed in the field) can be studied at various levels. Traditionally, these levels are never considered simultaneously in a single architecture, hence we propose a methodology allowing the combination of multi-agent simulation (aiming at a “microscopic” realism) and statistical data (aiming at a “macroscopic” realism). We present our architecture within the use of the last “time use survey”. We study the simulation’s realism within both local and aggregated context.

Keywords: 

multi-agent based simulation of human activity, multi-level realism

1. Introduction
2. Niveaux de simulation et de réalisme : 2 axes dans l’étude de la simulation de l’activité humaine
3. État de l’art sur le réalisme des simulations de l’activité humaine
4. SMACH : un modèle multi-agent de l’activité humaine
5. La génération d’emplois du temps
6. Rythme hebdomadaire et variabilité de l’activité
7. Expérimentations
8. Discussion
9. Conclusion
  References

Amouroux E, Huraux T, Sempé F, Sabouret N, Haradji Y. (2014). SMACH: Agent-Based Simulation Investigation on Human Activities and Household Electrical Consumption. Communications in Computer and Information Science 449: 194–210. 

Amouroux E, Huraux T, Sempé F, Sabouret N. (2013). SMACH: Simuler l’activité Humaine Pour Limiter Les Pics de Consommation Électrique. Journées Francophones Sur Les Systèmes Multi-Agents (JFSMA). 

Barot C, Lourdeaux D, and Lenne D. (2013). Using Planning to Predict and Influence Autonomous Agents Behaviour in a Virtual Environment for Training. 2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing. 

Beckman R, Keith J, Baggerly A, and McKay M. (1996). Creating Synthetic Baseline Populations. Transportation Research Part A: Policy and Practice 30(6): 415–29. 

Bosse T, Hoogendoorn M, Klein M.C, Treur J, Van Der Wal C.N, Van Wissen A. (2013). Modelling Collective Decision Making in Groups and Crowds: Integrating Social Contagion and Interacting Emotions, Beliefs and Intentions. Autonomous Agents and Multi-Agent Systems, 1–33. 

Caillou P. (2010). Automated Multi-Agent Simulation Generation and Validation. Principles and Practice of Multi-Agent Systems, Springer-Verlag, 398–413.

Chiou YS. (2009). Deriving US Household Energy Consumption Profiles from American Time Use Survey Data a Bootstrap Approach. 11th International Building Performance Simulation. 

Darty K, Saunier J, and Sabouret N. (2014). Behavior Clustering and Explicitation for the Study of Agents’ Credibility: Application to a Virtual Driver Simulation. International Conference on Agents and Artificial Intelligence: 82–99. 

Drogoul A, Amouroux E, Caillou P, Gaudou B, Grignard A, Marilleau N, Taillandier P, Vavasseur M, Vo D-A, Zucker J.D (2013). Gama: Multi-Level and Complex Environment for Agent-Based Models and Simulations. 2013 International Conference on Autonomous Agents and Multi-Agent Systems, 1361–62. 

Drogoul A, Vanbergue D, and Meurisse T. (2003). Multi-Agent Based Simulation: Where Are the Agents? Multi-Agent-Based Simulation II, Springer Berlin, 1–15. 

Feldman MS, and Pentland BT. (2003). Reconceptualizing Organizational Routines as a Source of Flexibility and Change. Administrative science quarterly 48(1): 94–118. 

Gargiulo F, Ternes S, Huet S, and Deffuant G. (2010). An Iterative Approach for Generating Statistically Realistic Populations of Households. PloS one 5(1): e8828. 

Grosz BJ, and Kraus S. (1996). Collaborative Plans for Complex Group Action. Artificial Intelligence 86(2): 269–357. 

Guibourdenche J. (2013). Préoccupations et Agencements Dans Les Contextes d’activité Domestique. Contribution à La Conception de Situations Informatiques Diffuses, Appropriables et Énergétiquement Efficaces. Université Lumière-Lyon II. 

Haradji Y, Poizat G, and Sempé F. (2012a). Advances in applied human modeling and simulation Human Activity and Social Simulation. ed. V. G. Duffy. Boca Raton, FL : CRC Press. 

Haradji Y, Poizat G, and Sempé F. (2012b). L’activité Humaine et La Conception d’une Plateforme de Simulation Sociale. 47e congrès de la Société d’Ergonomie de Langue Française (SELF). 

Haradji Y, and Poizat G. (2017). Simuler l’activité Humaine. In Encyclopédie d’analyse Des Activités, PUF, 255–81. 

Haradji Y, and Sempé F. (2015). Valider La Simulation de Comportements Humains Dans SMACH : Principes Méthodologiques et Résultats. 

Hubner JF, and Sichman JS. (2007). Developing Organised Multiagent Systems Using the MOISE+ Model: Programming Issues at the System and Agent Levels. International Journal of Agent-Oriented Software Engineering 1: 370–95. 

Lanquepin V, Carpentier K, and Lourdeaux D. (2013). HUMANS: A HUman Models Based Artificial ENvironments Software Platform. Proceedings of the Virtual Reality International Conference: Laval Virtual. 

Marsella S, and Gratch J. (2009). EMA: A Process Model of Appraisal Dynamics. Cognitive Systems Research 10(1): 70–90. 

Mohammadi B, and Saiac JH. (2003). Pratique de La Simulation Numérique. Dunod. 

Müller K, and Axhausen K. (2011). Population Synthesis for Microsimulation: State of the Art. Transportation Research Board Annual Conference.

Navarro L, Flacher F, and Corruble V. (2011). Dynamic Level of Detail for Large Scale Agent-Based Urban Simulations. The 10th International Conference on Autonomous Agents and Multiagent Systems, 701–8. 

Paul R, Charles D, McNeill M, and McSherry D. (2010). MIST: An Interactive Storytelling System with Variable Character Behavior. Joint International Conference on Interactive Digital Storytelling, Springer, 4–15. 

Rao AS, and Georgeff MP. (1991). Modeling Rational Agents within a BDI-Architecture. Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, ed. James Allen and Richard Fikes and Erik Sandewall. 

Morgan Kaufmann publishers Inc., San Mateo, CA, USA, 473-484. 

Richardson I, Thomson M, Infield D, and Clifford C. (2010). Domestic Electricity Use: A High-Resolution Energy Demand Model. Energy and Buildings 42(10): 1878–1887. 

Sargent R G. (2013). Verification and Validation of Simulation Models. Journal of Simulation 7(1): 12–24. 

Sharma S, Otunba S. (2012). Collaborative Virtual Environment to Study Aircraft Evacuation for Training and Education. Collaboration Technologies and Systems: 569–74. 

Shendarkar A, Vasudevan K, Lee S, and Son YJ. (2008). Crowd Simulation for Emergency Response Using BDI Agents Based on Immersive Virtual Reality. Simulation Modelling Practice and Theory 16(9): 1415–29. 

Six L, Guessoum Z, Saunier J, and Ieng S. (2013). Towards a Truck-Driver Model Using a Hysteresis Based Analysis and Verification Approach. The 2013 International Conference on Autonomous Agents and Multi-Agent Systems, 1219–20. 

Stinson LL. (1999). Measuring How People Spend Their Time: A Time-Use Survey Design. Monthly Lab. Rev. 122: 12. 

Taillandier P, Vo D-A, Amouroux E and Drogoul A. (2010). GAMA: A Simulation Platform That Integrates Geographical Information Data, Agent-Based Modeling and Multi-Scale Control. Principles and Practice of Multi-Agent Systems, Springer, 242–58. 

Tambe M. (1997). Towards Flexible Teamwork. Journal of artificial intelligence research 7: 83–124. 

Tanimoto J, Hagishima A, and Sagara H. (2008). A Methodology for Peak Energy Requirement Considering Actual Variation of Occupants’ Behavior Schedules. Building and Environment 43(4): 610–619. 

Thalmann D, and Musse SR. (2007). Crowd Simulation. London, UK, Springer. 

Traum D, Rickel J, Gratch J, and Marsella S. (2003). Negotiation over Tasks in Hybrid Human-Agent Teams for Simulation-Based Training. Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, 441–48. 

Ulicny B, Thalmann D. (2001). Crowd Simulation for Interactive Virtual Environments and VR Training Systems. Computer Animation and Simulation, Springer, 163–70. 

Widén J, Molin A, and Ellegård K. (2012). Models of Domestic Occupancy, Activities and Energy Use Based on Time-Use Data: Deterministic and Stochastic Approaches with Application to Various Building-Related. Journal of Building Performance Simulation 5(1): 27–44. 

Yamaguchi Y, and Shimoda Y. (2015). Evaluation of a Behavior Model of Occupants in Home Based on Japanese National Time Use Survey. In Proceedings of BS2015