Numerical analysis of crack behavior subjected to residual stresses in the metal matrix composites

Numerical analysis of crack behavior subjected to residual stresses in the metal matrix composites

Sara RamdoumBoualem Serier Farida Bouafia Hamida Fekirini 

LMPM Mechanical Engineering Department, University Sidi Bel Abbes, Algérie

Corresponding Author Email: 
ramdoum-sara@hotmail.com
Page: 
335-356
|
DOI: 
https://doi.org/10.3166/rcma.2017.00024
Received: 
| |
Accepted: 
| | Citation

ACCESS

Abstract: 

From the elaboration of composites at relatively high temperatures, result the residual stresses highly localized in the fiber and the matrix in the nearest vicinity of their interface. These shear stresses put the fiber in compression and the matrix in tension. The objective of this work is to study, three-dimensionally by the finite element method, the effect of these constraints on the behavior of cracks initiated in a composite of a matrix of Al fiber reinforced Al2O3. This behavior is analyzed in terms of variation of the stress intensity factor in modes I, II and III. The effect of the size of the crack, its orientation, its localization, its propagation as well as its penetration has been highlighted.

Keywords: 

matrix, fiber, crack, residual stresses, localization, stress intensity factor, propagation

1. Introduction
2. Modélisation par éléments finis
3. Résultats et discussion
4. Conclusion
  References

Abaqus Hibbit. (2017). User’s manual, 6.5. Karlsson & Sorensen Inc.

Aghdam M.M., Morsali S.R. (2013). Understanding residual stresses in metal matrix composites. Residual stresses in composite materials, p. 233-255.

Chi-Seung L., Jeong-Hyeon K., Seul-Kee K., Dong-Man R., Jae-Myung L. (2014). Initial and progressive failure analyses for composite laminates using Puck failure criterion and damagecoupled finite element method. Journal of Composite Structures, vol. 121, p. 406-419.

Fatih C., Mete O.K. (2014). Numerical analysis of interface crack problem in composite plates jointed with composite patch. An International Journal of Steel and Composite Structures, vol. 16, no 2.

Gasparyan S. (2006). Determination of residual stresses in metallic composites. Journal of Materials Processing Technology, vol. 178, no1-3, p. 14-18.

Geniaut S. (2012). Calcul des facteurs d’intensité des contraintes. http://www.codeaster.org/doc/v12/fr/man_r/r7/r7.02.08.pdf.

Greisel M., Jäger J., Moosburger-Will J., Sause M.G.R., Mueller W.M., S.H. (2014). Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests. Journal of Composites Part A: Applied Science and Manufacturing, vol. 66, p. 117-127.

Ilki, Nahit Kumbasar. (2002). Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets. An International Journal of Structural Engineering and Mechanics, vol. 13, no1.

Itou S. (2007). Stress intensity factors for an interface crack between an epoxy and aluminium composite plate. An International of Journal Structural Engineering and Mechanics, vol. 26, no1.

John M., Marina S., Martin L., Zouheir F. (2015). Modeling fatigue damage evolution in polymer matrix composite structures and validation using in-situ digital image correlation. Journal of Composite Structures, vol. 125, p. 354-361.

Konstantinos G.D., Dimitris G.A., Evangelos Z.K., Konstantinos G.D., Dimitris G.A., Evangelos Z.K. (2013). Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state. Journal of Composites Part A: Applied Science and Manufacturing, vol. 44, p. 105-113.

Leon M.Jr., Povl B. (2008). Three-dimensional numerical modeling of damage initiation in unidirectional fiber-reinforced composites with ductile matrix. Journal of Materials Science and Engineering: A, vol. 498, no1-2, 20, p. 81-86.

Liu Y.F., Kagawa Y. (2000). Journal of Composites Science and Technology, vol. 60, no2, p. 67-171.

Manizheh A., Mohammad R.F., Mehdi N., Elham S. (2015). A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact. An International Journal of Steel and Composite Structures, vol. 18, no5.

Ramdoum S., Serier B., Fekirini H., Bouafia F. (2015). Numerical analysis of the effect of residual stresses on the behavior of cracks in a metal matrix composite.9th International Conference on Advanced Computational Engineering and Experimenting, June, 2015, Munich, Germany.

Safarabadi M. (2014). Understanding residual stresses in polymer matrix composites.Residual stresses in composite materials, p. 197-232.

Sellam S., Serier B., Bouafia F., Bachir B.A., Sardar S.H. (2013). Analysis of the stresses intensity factor in alumina-Pyrex composites. Journal of Computational Materials Science, vol. 72, p. 68-80.

Serier B., Bachir Bouidjra B., Belhouari M. (2003). Finit element analysis of bimaterial interface notch crack behaviour. Journal of Computational Materials Science, vol. 27, p. 517-522.

Shuqi G., Kouichi H., Yutaka K. (2005). Interface debonding from bottom face and frictional transition during pushout testing of a tungsten fiber-epoxy matrix composite. Journal of Composites Science and Technology, vol. 65, p. 1808-1814.

Surendra K. (2010). Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations. An International Journal of Structural Engineering and Mechanics, vol. 35, no3.

Tian T., Youssef H., Horstemeyer M.F., Paul W. (2012). Finite element micromechanical analysis of the deformation and stress state dependent damage evolution in fiber reinforced metal matrix composites. Journal of Computational Materials Science, vol. 59, p. 165-173.

Vasiukov D., Panier S., Hachemi A. (2015). Direct method for life prediction of fibre reinforced polymer composites based on kinematic of damage potential. International Journal of Fatigue, vol. 70, p. 289-296.

Wang H.W., Zhou H.W., Ji H.W., Zhang X.C. (2014). Application of extended finite element method in damage progress simulation of fiber reinforced composites. Journal of Materials & Design, vol. 55, p. 191-196.

Xin S.H, Wen H.M. (2015). A progressive damage model for fiber reinforced plastic composites subjected to impact loading. International Journal of Impact Engineering, vol. 75, p. 40-52.

Yi Z., Xiang X., Dini W., Liang W. (2015). Residual thermal stresses in carbon/carbon-Zr-Ti-C composites and their effects on the fracture behavior of composites with different performs. Journal of Carbon, vol. 81, p. 597-606.