Hygromechanical characterization of glass fiber reinforced polyamide composites behavior

Hygromechanical characterization of glass fiber reinforced polyamide composites behavior

Hassan Obeid Alexandre Clément Sylvain Fréour Frédéric Jacquemin Pascal Casari 

Institut de recherche en génie civil et mécanique (UMR CNRS 6183), Université de Nantes, Centrale Nantes, 58, rue Michel-Ange, BP 420, 44606 Saint-Nazaire, France

Corresponding Author Email: 
hassan.obeid@univ-nantes.fr; alexandre.clement@univ-nantes.fr; sylvain.freour@univ-nantes.fr; frederic.jacquemin@univ-nantes.fr; pascal.casari@univ-nantes.fr
Page: 
231-248
|
DOI: 
https://doi.org/10.3166/rcma.2017.00022
Received: 
| |
Accepted: 
| | Citation

ACCESS

Abstract: 

The hygroscopic aging of polymer and polymer composites induces various effects. Among the consequences due to moisture absorption, hygroscopic swelling can become a critical issue in the context of industrial applications. In order to predict the swelling strains experienced by polymer composites during their service life, designers rely on their knowledge of the materials behavior law. The aim of the present work consists in characterizing the hygroscopic strains of polyamide-based composites and the corresponding neat resins. It will be established that, in order to appropriately reproduce the experimental results owing to the numerical simulations, it is necessary to not only develop a multiphysics, multiscale approach accounting the local swelling experienced by the polymer during the transient stage of the moisture diffusion process, as well as the plasticization of the polymer network which also takes place simultaneously.

Keywords: 

coupled hygromechanical problem, plasticization, polyamide PA6, moisture diffusion, hygroscopic expansion, multiphysics, multiscale

1. Introduction
2. Campagne expérimentale
3. Modélisation du problème hygromécanique et études numériques
4. Conclusion
Remerciements

Les auteurs remercient l’Agence de l’environnement et de la maîtrise de l’énergie (ADEME) pour le soutien apporté dans le cadre du projet STIICPA dans lequel s’inscrit le présent travail, ainsi que Solvay qui a fourni la matière nécessaire à la réalisation de la campagne expérimentale

  References

Beardmore P., Johnson C.F. (1986). The potential for composites in structural automotive applications. Compos. Sci. Technol., vol. 26, no 4, p. 251-281.

Chang Y.P., Cheah P.B., Seow C.C. (2000). Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J. Food. Sci., vol. 65, no 3, p. 445-451.

Cheah L.W. (2010). Cars on a diet: the material and energy impacts of passenger vehicle weight reduction in the U.S., Ph.D. dissertation, MIT, Cambridge, MA.

Crank J. (1978). The mathematics of diffusion. J. Compos. Mater., vol. 12, p. 118-131.

Ennis T.S., Karasz F.E. (1986). Enthalpy recovery and physical aging of polymer-diluent binary systems: a network epoxy and water. Polym. Eng. Sci., vol. 26, no 4, p. 290-296.

Ghanem R., Spaonos P. (1991). Stochastic finite elements: a spectral approach. Springer, Berlin.

Grave C., McEwan I., Pethrick R.A. (1998). Influence of stoichiometric ratio on water absorption in epoxy resins. J. Appl. Polym. Sci., vol. 69, p. 2369-2376.

Hassan A., Rahman N.A., Yahya R. (2012). Moisture absorption effect on thermal, dynamic mechanical and mechanical properties of injection-molded short glass-fiber/polyamide 6,6 composites. Fiber. Polym., vol. 13, no 7, p. 899-906.

Judkins R.R., Fulkerson W., Sanghvi M.K. (1993). The dilemma of fossil fuel use and global climate change. Energy Fuel, vol. 7, no 1, p. 14-22.

Kaimin’ I.F., Apinis A.P., Galvanovskii A.Y.A. (1975). The effect of the moisture content on the transition temperatures of polycaproamide. Polymer. Sci. U.S.S.R., vol. 17, no 1, p. 46-51.

Kawasaki K., Sekita Y., Kanou K. (1962). The extension of nylon 6 as a function of the extent and nature of sorbed water. J. Coll. Sci., vol. 17, p. 865-871.

Marque G., Neyertz S., Verdu Prunier V., Brown D. (2008). Molecular dynamics simulation study of water in amorphous kapton. Macromolecules, vol. 41, p. 3349-3362.

McBrierty V.J., Martin S.J., Karasz F.E. (1999). Understanding hydrated polymers: the perspective of NMR. J. Mol. Liq., vol. 80, p. 179-205.

Monson L., Braunwarth M., Extrand C.W. (2008). Moisture absorption by various polyamides and their associated dimensional changes. J. Appl. Polym. Sci., vol. 107, no 1, p. 355-363.

Myllytie P., Salmén L., Haimi E., Laine J. (2010). Viscoelasticity and water plasticization of polymer-cellulose composite films and paper sheets. Cellulose, vol. 17, p. 375-385.

Nielsen S.A., Toftegaard H. (2000). Ultrasonic measurement of elastic constants in fiberreinforced polymer composites under influence of absorbed moisture. Ultrasonics, vol. 38, p. 242-246.

Patterson W. (2012). Fueling geopolitics. Geopolitics Energy, vol. 34, no 4, p. 2-6.

Selzer R., Friedrich K. (1997). Mechanical properties and failure behavior of carbon fiberreinforced polymer composites under the influence of moisture. Compos. Part A, vol. 28, p. 595-604.

Shen C.H., Springer G.S. (1976). Moisture absorption and desorption of composite materials. J. Compos. Mater., vol. 10, p. 2-20.

Sideridou I.D., Karabela M.M., Vouvoudi E.C. (2008). Volumetric dimensional changes of dental light-cured dimethacrylate resins after sorption of water or ethanol. Dent. Mater., vol. 24, p. 1131-1136.

Starkweather H.W. (1959). The sorption of water by nylons. J. Appl. Polym. Sci., vol. 2 no 5, p. 129-133.