Suivi de la fabrication de stratifiés verrepolypropylène par réseaux de Bragg et du comportement thermomécanique induit

Suivi de la fabrication de stratifiés verrepolypropylène par réseaux de Bragg et du comportement thermomécanique induit

Matthieu Mulle Husam Wafai Arief Yudhanto Gilles Lubineau Recep Yaldiz Warden Schijve Nikhil Verghese 

King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering, COHMAS Laboratory, Thuwal 23955-6900, Saudi Arabia

SABIC, P.O. Box 319, 6160 AH Geleen, The Netherlands

Corresponding Author Email:;
| |
31 March 2018
| Citation



Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using embedded fiber Bragg gratings (FBGs) in unidirectional laminates. These sensors allowed the monitoring of process-induced strains. Because the cooling phase is critical in thermoplastics manufacturing, affecting crystallinity and ultimately residual strain, two metallic molds with different heat diffusion capacities were used (steel and aluminum). The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related to physical changes of the laminate, revealing key transition points such as the onset of melt or solidification. After the GFPP plates were released from the mold, residual strains were estimated. The longitudinal behavior is controlled by the behavior of the glass fibers. The transverse residual strain of the laminate made with the aluminum mold is higher than that of the laminate made with the steel mold. The thermal expansion behavior was investigated during a post-process heating procedure. A particular behavior was observed at the first heating ramp for the laminate made with the steel mold, indicating that the relatively poor thermal diffusion had a significant influence on the crystalline microstructure. The thermal expansion coefficient is higher for the aluminum mold made laminate. A DSC (Differential Scanning Calorimetry) of both materials showed a similar degree of crystallinity after processing and a similar increase after the heat treatment. This suggested that the difference of thermal expansion properties is related to the initial strain state of the laminates.


process monitoring, hot-press molding, fiber Bragg gratings, residual strains, properties, thermoplastics

1. Introduction
2. Expérimental
3. Résultats et discussion
4. Conclusion

Ces travaux de recherche ont été réalisés grâce au support financier de SABIC (Saudi Arabia Basic Industries Corporation) au titre de la convention de subvention RGC/3/2050-01-01, et de KAUST (King Abdullah University of Science and Technology), sur des fonds BAS/1/1315-01-01.


Barnes J.A., Byerly G.E. (1994). The formation of residual stresses in laminated thermoplastic composites. Composite Science and technology, vol. 51, p. 479-494.

Guillen J.F., Cantwell W.J. (2002). The influence of cooling rate on the fracture properties of glass Reinforced/Nylon fiber-metal laminate. Polymer composites, Vol. 23, n˚. 5.

Hadzic R., John S., and Herszberg I. (1999). Structural integrity analysis of embedded optical fibres in composite structure. Composite Structures, vol.47, p. 759-765.

Hill K.O., Meltz G. (1997). Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol., vol. 15(8), p.1263-76.Parlevliet P.P., Bersee H.E.N., Beukers A. (2006). Residual stresses in thermoplastic composites, a study of the literature-Part I: Formation of residual stresses, Composites: Part A, vol. 38, p. 1847-1857.

Kuang K.S.C., Kenny R., Whelan M.P., Cantwell W.J., Chalker P.R. (2001). Embedded fibre Bragg grating sensors in advanced composite materials. Compos Sci Technol. vol. 61,

p. 1379-87.

Kuang K.S.C., Zhang L., Cantwell W.J., Bennion I. (2005). Process monitoring of aluminumfoam sandwich structures based on thermoplastic fibre–metal laminates using fibre Bragg gratings, Composites Science and Technolog, vol. 65, p. 669-676.

Levin K., Skontorp A. (2002). Fibre optic sensors in composite structures. European Workshop on SHM, Paris France, p. 530-537.

Lubineau G. (2008). Estimation of residual stresses in laminated composites using field measurements on a cracked sample. Composites Science and Technology, vol. 68(13), p. 2761-2769.

Mulle et al., Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings, Composites Science and Technology 123 (2016) 143-150.

Mulle M., Collombet F., Olivier P., Grunevald Y.-H. (2009). Assessment of cure residual strains through the thickness of carbon-epoxy laminates using FBGs, part I: elementary specimen. Composites: Part A, vol. 40, p. 94-104.

Nielsen A. S., Pyrz R. (1998). The effect of cooling rate on thermal residual strains in carbon/polypropylene microcomposites. Science and engeneering of composite materials, vol. 7, n˚ 1-2.

Parlevliet P.P., Bersee H.E.N., Beukers A. (2007). Residual stresses in thermoplastic composites, a study of the literature-Part II: Experimental techniques, Composites: Part A, vol. 38, p. 651-665.

Potter K.D., Campbell M., Langer C., Wisnom M.R. (2005). The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components, Composites Part A, vol. 36, p. 301-308.

Rao Y.-J. (1997). In-fibre Bragg grating sensors. Meas. Sci. Technol. Vol.8, p. 355-375. Sorensen L., Gmur T., Botsis J. (2006). Residual strain development in an AS4/PPS thermoplastic composite measured using fibre Bragg grating sensors. Composites: Part A, vol. 37, p. 270-281.

Twigg G, Poursartip A, Fernlund G. (2003). An experimental method for quantifying tool–part shear interaction during composites processing. Composite science and technology, vol. 63 p.1985-2002.

Wafai H, Lubineau G, Yudhanto A, Mulle M, Schijve W, Verghese N. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP) Composites: Part A 2016; 91 :41–52

Youssef Y., Denault J. (1998). Thermoformed glass fiber reinforced Polypropylene: Micro structure, mechanical properties and residual stresses, Polymer composites, vol. 19. n˚ 3.