Mechanical behavior modeling of damaged composite matrix

Mechanical behavior modeling of damaged composite matrix

Hocine BourennaneDjelloul Gueribiz Ahmed Benchatti 

Laboratoire de Génie des Procédés, Université de Laghouat, Algérie

Laboratoire de Génie mécanique, Université de Laghouat, Algérie

Corresponding Author Email:
| |
30 September 2018
| Citation



In this study, the effect induced by damage on the mechanical behavior of composite matrix is investigated. For this propose an analytical approach is proposed to predict the mechanical behavior of damaged matrix. The undertaken formulation is based on the concept of complacency and the notions of facture mechanics, while the damage is assumed to be  in  the form of an ellipsoidal crack. The effect is quantified directly on the elastic constants and particularly on the Young's  modulus. The aim is to determine the effective Young's modulus of the damaged matrix for a given crack volume fraction. This approach enables us to determine the three components of Young's modulus for the damaged matrix. The results obtained from this approach compared to those of conventional multi-scales homogenization approaches and to those obtained by the finite element homogenization approach, reveals that the proposed approach is more representative for the real cracks case. In addition based on this approach, new expressions for the damage parameters can be proposed.


composites mechanical behavior, damage, polymer matrix

1. Introduction
2. Model formalism
3. Multi-scale homogenization methods
4. Finite elements approach
5. Conclusion

Aboudi J. (1991). A unified micromechanical approach. Mechanics of Composite Materials Elsevier, Vol. 29, pp. 338.

Allix O., Ladevèze P. (1992). Interlaminar interface modelling for the prediction of laminates delamination. Composite Structures, Vol. 22, pp. 235-242.

Balocco C., Petrone G. (2018). Heat and moisture transfer investigation of surface building materials. Mathematical Modelling of Engineering Problems, Vol. 5, No. 3, pp. 146-152.

Barbero E. J., Lonetti P. (2001). Damage model for composites defined in terms of vailable data. Mechanics of Composite materials and Structures, Vol. 8, No. 4, pp. 299-315.

Benhamida A., Brini A., Dumontet H., et Pradel F. (2003). Durabilité et vieillissement des mousses syntactiques par une approche multi-échelles. 16ème Congrès Français de Mécaniquen, Nice, France.

Benveniste Y. (1987). A New approach to the application of Mori-Tanaka’s theory in composite materials. Mechanics of Materials, Vol. 6, pp. 147-157.

Cardinale T., Sposato C. A., Feo P., Fazio D. (2018). Clay and fibers: Energy efficiency in buildings between tradition and innovation. Mathematical Modelling of Engineering Problems, Vol. 5, No. 3, pp. 183-189.

Charewicz A., Daniel I. M. (1986). Damage Mechanisms and accumulation in graphite epoxy laminates. Composite Materials: Fatigue and Fracture, pp. 274-297.

Cherepanov G. P. (1967). The propagation of cracks in a continuous medium. Journal of Applied Mathematics and Mechanics, Vol. 31, No. 3, pp. 503-512.

Costa M. L., Almeida S. F. M., Rezende M. C. (2001). The influence of porosity on the interlaminar shear strength of carbon epoxy and carbon bismaleimide fabric laminates. Composites Science and Technology, Vol. 61, pp. 2101-2108.

Eshelby J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 241, pp. 376-396.

Hashin Z. (1980). Failure criteria for unidirectional fiber composites. ASME Journal Applied Mechanics, Vol. 47, pp. 329-334.

Hashin Z. (1974). Theory of  Fibre-Reinforced Materials. NASA-CR.

Huynh Q. V. (2006). Estimation des propriétés poromecaniques effectives des argilites apport des méthodes d’homogénéisation. Thèse de l’Ecole Nationale Supérieure de Géologie de Nancy, Université de Nancy.

Jacquemin F., Fréour S., Guillén R. A. (2005). Self-consistent approach for transient hygroscopic stresses and moisture expansion coefficients of fiber-reinforced composites. Journal of Reinforced Plastics and Composites, Vol. 24, pp. 485-502.

Jacquemin F., Fréour S. (2008). Multi-scale analysis of fiber-reinforced composite parts submitted to environmental and mechanical loads. Composite Materials Research Nova Science Publishers, 1st of March, pp. 1-50.

Kamimura K. (1985). Continuum damage approach to mechanical behavior of damage laminated and modeling of damage parameter. Elsevier Applied science publishers Ltd, pp. 115-126.

Kardos J. L., Dudukovic M. P. (1986). Void growth and resin transport during processing of thermosetting– matrix composites. Advances in Polymer Science, Vol. 80, pp. 101-123.

Ladevèze P., Le Dantec E. (1992). Damage modelling of the elementary ply for laminated composites. Composites Science and Technology, Vol. 43, No. 3, pp. 257-267.

Mura T. (1987). Micromechanics of defects in solids. Second revised edition, ISBN 90-247-3343-X(HB), and ISBN 90-247-3256-5(PB).

Nguyen H. G. (2008). Approche micromécanique pour la modélisation du comportement élastoplastique aux mortiers de résine. Thèse de l’université de Cergy-Pontoise. 

Safadari M., Sottos N., Guebelle P. (2015). Statistical Analysis of Failure in Polymer Matrix Composites. TMS 2015 144th Annual Meeting & Exhibition, pp. 1049-1056.

Wang H. B., Guo X. G. (2017). Transient analysis of thermal and moisture transfer in building materials. International Journal of Heat and Technology, Vol. 35, No. 4, pp. 821-826.