Study and development of innovative materials for hydrogen storage activity

Study and development of innovative materials for hydrogen storage activity

M. F. Gatto R. Pedicini* A. Carbone A. Saccà F. Matera I. Gatto 

CNR-ITAE, Institute for Advanced Energy Technologies “Nicola Giordano”, Via S. Lucia sopra Contesse, 5, 98126 Messina, Italy

Affiliated to Dipartimento di Fisica, Università della Calabria, Via Ponte P. Bucci, Cubo 31C, 87036 Arcavacata di Rende (CS), Italy

Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ad Ambientali C.I.R.C.M.S.B., University of Messina, V.le F. Stagno D'Alcontres 31, Vill. S. Agata, 98166 Messina, Italy

Corresponding Author Email: 
rolando.pedicini@itae.cnr.it
Page: 
323-332
|
DOI: 
https://doi.org/10.3166/RCMA.28.323-332
| |
Published: 
30 September 2018
| Citation

ACCESS

Abstract: 

The hydrogen storage activity at CNR-ITAE is actually focused on the different materials having a promising hydrogen sorption capability. Some of these have natural origin, other ones are designed and synthetized in laboratory. A study on carbonized banana peels was carried out focusing the attention on activation methods and porosity. Etna Lava powders, coming from two Etna eruptions (1880 and 2006), are studied and characterized. Their slight different composition is probably responsible of the different hydrogen sorption degree: after activation, powder of 2006 is more efficient than that of 1880. Hydrogen sorption properties of alanates are well known, but their high reactivity due to air exposition is a big limit: a method to cover the alanates of a particular polymeric capsule (Polysulphone, Polyetilene, etc.) with high selective hydrogen permeability is studied. At the end, since previous results demonstrated that Mn oxides are promising for H2 sorption systems, in order to improve their storage capabilities (3wt.% at 40bar/50°C after 300 hrs.), a study on the different steps of synthesis is carried out.

Keywords: 

materials, synthesis, hydrogen storage

1. Introduction
2. Experimental
3. Results and discussion
4. Conclusions
Acknowledgment
  References

Armaroli N., Balzani V. (2006). The future of energy supply: challenges and opportunities. Angew Chem Int Edit, Vol. 46, No. 1-2, pp. 52-66. https://doi.org/10.1002/anie.200602373

Chiodo V., Urbani F., Zafarana G., Prestipino M., Galvagno A., Maisano S. (2017). Syngas production by catalytic steam gasification of citrus residues. Int J Hydrogen Energy, Vol. 42, No. 43, pp. 28048-28055. https://doi.org/10.1016/j.ijhydene.2017.08.085

Crabtree G. W., Dresselhaus M. S., Buchanan M. V. (2004). The hydrogen economy. Phys Today, Vol. 57, No. 12, pp. 39-44. https://doi.org/10.1063/1.1878333

De la Casa-Lillo M. A., Lamari-Darkrim F., Cazorla-Amoros D., Linares-Solano A. (2002). Hydrogen storage in activated carbons and activated carbon fibers. The J Phys Chem B, Vol. 106, No. 42, pp. 10930-10934. https://doi.org/10.1021/jp014543m

Dias J. M., Alvim-Ferraz M. C., Almeida M. F., Rivera-Utrilla J., Sánchez-Polo M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J Environ Manage, Vol. 85, No. 4, pp. 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031

Dong J., Wang X., Xu H., Zhao Q., Li J. (2007). Hydrogen storage in several microporous zeolites. Int J Hydrogen Energy, Vol. 32, No. 18, pp. 4998-5004. https://doi.org/10.1016/j.ijhydene.2007.08.009

Eberle U., Arnold G., Von Helmolt R. (2006). Hydrogen storage in metal–hydrogen systems and their derivatives. J Power Sources, Vol. 154, No. 2, pp. 456-460. https://doi.org/10.1016/j.jpowsour.2005.10.050

Foo K. Y., Hameed B. H. (2010). Detoxification of pesticide waste via activated carbon adsorption process. J Hazard Mater, Vol. 175, No. 1-3, pp. 1-11. https://doi.org/10.1016/j.jhazmat.2009.10.014

Kadirvelu K., Thamaraiselvi K., Namasivayam C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technol, Vol. 76, No. 1, pp. 63-65. https://doi.org/10.1016/S0960-8524(00)00072-9

Orimo S. I., Nakamori Y., Eliseo J. R., Züttel A., Jensen C. M. (2007). Complex hydrides for hydrogen storage. Chem Rev, Vol. 107, No. 10, pp. 4111-4132. https://doi.org/10.1021/cr0501846

Palomba V., Prestipino M., Galvagno A. (2017). Tri-generation for industrial applications: Development of a simulation model for a gasification-SOFC based system. Int J Hydrogen Energy, Vol. 42, No. 46, pp. 27866-27883. 

Pedicini R., Saccà A., Carbone A., Passalacqua E. (2011). Hydrogen storage based on polymeric material. Int J Hydrogen Energy, Vol. 36, No. 15, pp. 9062-9068. https://doi.org/10.1016/j.ijhydene.2011.04.176

Pedicini R., Schiavo B., Rispoli P., Saccà A., Carbone A., Gatto I., Passalacqua E. (2014). Progress in polymeric material for hydrogen storage application in middle conditions. Energy, Vol. 64, pp. 607-614. https://doi.org/10.1016/j.energy.2013.11.073

Pedicini R., Sigalas M., Carbone A., Gatto I. (2017). Functionalised hybrid Poly (ether ether ketone) containing MnO2: Investigation of operative conditions for hydrogen sorption. Int J Hydrogen Energy, Vol. 42, No. 15, pp. 10089-10098. https://doi.org/10.1016/j.ijhydene.2017.02.111

Prestipino M., Chiodo V., Maisano S., Zafarana G., Urbani F., Galvagno A. (2017). Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: Experimental and simulation activities. Int J Hydrogen Energy, Vol. 42, No. 43, pp. 26816-26827. https://doi.org/10.1016/j.ijhydene.2017.05.173

Rosi N. L., Eckert J., Eddaoudi M., Vodak D. T., Kim J., O'keeffe, Yaghi O. M. (2003). Hydrogen storage in microporous metal-organic frameworks. Science, Vol. 300, No. 5622, pp. 1127-1129. https://doi.org/10.1126/science.1083440

Sakintuna B., Lamari-Darkrim F., Hirscher M. (2007). Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy, Vol. 32, No. 9, pp. 1121-1140. 

Scott S. C. (1983). Variations in lava composition during the March 1981 eruption of month Etna and the implications of a compositional comparison with early historic eruption. B Volcanol, Vol. 46, No. 4, pp. 393-412. https://doi.org/10.1007/BF02597773

Siriwardane R. V., Shen M. S., Fisher E. P., Poston J. A. (2001). Adsorption of CO2 on molecular sieves and activated carbon. Energ Fuel, Vol. 15, No. 2, pp. 279-284. https://doi.org/10.1021/ef000241s

Subramanian V., Luo C., Stephan A. M., Nahm K. S., Thomas S., Wei B. (2007). Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C, Vol. 111, No. 20, pp. 7527-7531. https://doi.org/10.1021/jp067009t

Turner J. A. (1999). A realizable renewable energy future. Science, Vol. 285, No. 5428, pp. 687-689. https://doi.org/10.1126/science.285.5428.687

Turner J. A. (2004). Sustainable hydrogen production. Science, Vol. 305, No. 5686, pp. 972-974. https://doi.org/10.1126/science.1103197

Wehmschulte R. J., Power P. P. (2000). Primary alanes and alanates: Useful synthetic reagents in aluminum chemistry. Polyhedron, Vol. 19, No. 14, pp. 1649-1661. https://doi.org/10.1016/S0277-5387(00)00455-1

Zaluska A., Zaluski L., Ström-Olsen J. O. (2000). Sodium alanates for reversible hydrogen storage. J Alloys Compd, Vol. 298, No. 1-2, pp. 125-134. https://doi.org/10.1016/s0925-8388(99)00666-0