Cinétique de cristallisation en refroidissement rapide et sous pression de polymères thermoplastiques

Cinétique de cristallisation en refroidissement rapide et sous pression de polymères thermoplastiques

Nicolas Boyard Baptiste Pignon Vincent Sobotka Didier Delaunay 

Laboratoire de Thermique et Energie de Nantes, UMR 6607 CNRS Université de Nantes, La Chantrerie, rue Christian Pauc CS 50609, 44306 Nantes cedex 3

Corresponding Author Email:
| |
31 March 2018
| Citation



The accurate knowledge of heat transfer in forming processes is of high importance to predict shrinkage, deformations and residual stresses of a thermoplastic part. The use of a semi-crystalline polymer induces a transformation, which directly influences the part quality in terms of mechanical properties and geometrical tolerances. The process simulation requires the determination of thermo-physical properties and the crystallization kinetics since they are strongly coupled, but also the boundary conditions at the surface of the part, in relevant processing conditions. In this framework, we present in this paper, from three complementary devices, a study describing the characterization of polypropylene crystallization in high cooling and pressure conditions, and the evolution of the thermal contact resistance between this polymer and the mould.


crystallization, kinetics, thermoplastics, rapid cooling

Extended abstract
1. Introduction
2. Étude de la cinétique de cristallisation par FDSC sur une large gamme de températures
3. Transferts de chaleur et cristallisation à la surface d’une pièce thermoplastique mise en forme par injection
4. Identification de la cristallisation sous pression par le dispositif « PvT-XT »
5. Conclusions

Adamovsky S., Minakov A., Schick C. (2003). Scanning microcalorimetry at high cooling rate. Thermochimica Acta, vol. 403, n° 1, p. 55–63.

Avrami M. (1939). Kinetics of Phase Change I, General Theory, Journal of Chemical Physics, vol. 7, p. 1103-1112.

Bendada A., Derdouri A., Lamontagne M., Simard Y. (2004). Analysis of thermal contact resistance between polymer and mold in injection molding, Applied Thermal Engineering, vol. 24, n° 14–15, p. 2029–2040.

Boyer S.A.E., Fournier F.E.J., Gandin C.-A., Haudin J.-M. (2014). CRISTAPRESS : an optical cell for structure development in high pressure crystallization. Review of Scientific Instruments, vol. 85, p. 013906.

Coccorullo I., Pantani R., Titomanlio G. (2008). Spherulitic nucleation and growth rates in an iPP under continuous shear flow. Macromolecules, vol. 41, p. 9214–9223.

De Santis F., Adamovsky S., Titomanlio G., Schick C. (2007). Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules, vol. 40, p. 9026–9031.

Delaunay D., Le Bot P., Fulchiron R., Luyé J.-F., Regnier G. (2000). Nature of contact between polymer and mold in injection molding. Par I : Influence of a non-perfect thermal contact. Polymer Engineering and Science, vol. 40, n° 7, p. 1682-1691.

Evans U.R. (1945). The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals, Transactions of Faraday Society, vol. 41, p. 365-374.

Forstner R., Peters G.W.M., Meijer H.E.H. (2009). A novel dilatometer for PVT measurements of polymers at high cooling – and shear rates, International Polymer Processing, vol. 24, n° 2, p. 114–121.

Fulchiron R., Koscher E., Poutot G., Delaunay D., Régnier G. (2001). Analysis of the pressure effect on the crystallization kinetics of polypropylene: dilatometric measurements and thermal gradient modeling. Journal of Macromolecular Science B, vol. 40, n° 3, p. 297–314.

Haudin J.-M., Chenot J.-L. (2004). Numerical and physical modeling of polymer crystallization. Part 1 theorical and numerical analysis, International Polymer Processing, vol. 19, p. 264-274.

Kolb R., Wutz C., Stribeck N., Von Krosigk G., Riekel C. (2001). Investigation of Secondary Crystallization of Polymers by Means of Microbeam X-Ray Scattering. Polymer, vol. 42, n° 12, p. 5257-5266.

Koscher E., Fulchiron R. (2002a). Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer, vol. 43, p. 6931–6942.

Koscher E. (2002b). Effets du cisaillement sur la cristallisation du polypropylène : aspects cinétiques et morphologiques. Thèse en Matériaux polymères et Composites, Université Claude Bernard Lyon 1.

Le Goff R., Poutot G., Delaunay D., Fulchiron R., Koscher E. (2005). Study and modeling of heat transfer during the solidification of semi-crystalline polymers, International Journal of Heat and Mass Transfer, vol. 48, n° 25-26, p. 5417–5430.

Le Goff R. (2006). Etude et modélisation des transferts thermiques lors de la solidification de pièces injectées en polymère semi-cristallin chargé de fibres. Thermique en Thermique Energétique, Université de Nantes.

Le Louët V., Rousseau B., Le Corre S., Boyard N., Tardif X., Delmas J., Delaunay D. (2017). Directional spectral reflectivity measurements of a carbon fibre reinforced composite up to 450 °C. International Journal of Heat and Mass Transfer, vol. 112, p. 882-890.

Massé H., Arquis É., Delaunay D., Quilliet S., Le Bot P.H. (2004). Heat transfer with mechanically driven thermal contact resistance at the polymer-mold interface in injection molding of polymers, International Journal of Heat and Mass Transfer, vol. 47, n° 8–9, p. 2015–2027.

Mezghani K., Phillips P.J. (1998). The gamma phase of high molecular weight isotactic polypropylène : III. The equilibrium melting point and the phase diagram. Polymer, vol. 39, n°16, p. 3735-3744.

Millischer A., Delaunay D., Jarny Y. (2001). Thermomechanical coupling in BMC injection process : characterization, modelization and experimental validation. Actes du congrès 3rd Canadian International Conference on Composites, Montréal, Canada.

Monasse B. (1995). Nucleation and anisotropic crystalline growth of polyethylene under shear. Journal of Material Science, vol. 30, n° 19, p. 5002–5012.

Nakamura K., Watanabe T., Katayama K., Amano T. (1972). Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. Journal of Applied Polymer Science, vol. 16, p. 1077-1091.

Ozawa T. (1971). Kinetics of non-isothermal crystallization. Polymer, vol. 12, p. 150-158.

Pignon B., Tardif X., Lefèvre N., Sobotka V., Boyard N., Delaunay D. (2015a). A new PvT device for high performance thermoplastics: heat transfer analysis and crystallization kinetics identification. Polymer Testing, vol. 45, p. 152–160.

Pignon B. (2015b). Cristallisation des polymères semi-cristallins en condition thermique extrême. Thèse en Energétique, Thermique, Combustion, Université de Nantes.

Pignon B., Tardif X., Lefèvre N., Sobotka V., Boyard N., Delaunay D. (2017). Heat transfer analysis at high cooling rate on the surface of thermoplastic parts. International Journal of Heat and Mass Transfer, vol. 106, p. 253-262.

Poutot G. (2002). Etude des transferts thermiques lors de la cristallisation d’un polymère semi-cristallin. Thèse en Thermique Energétique, Université de Nantes.

Pyda M., Nowak-*Pyda E., Heeg J., Huth H., Minakov A., Di lorenzo M.L., Schick C., Wunderlich B. (2006). Melting and crystallization of Poly(butylene terephtalate) by temperature-modulated and superfast calorimetry. Journal of Polymer Science part B, vol. 44, n° 9, p. 1364-1377.

Rhoades A.M., Williams J.L., Androsch R. (2015). Crystallization kinetics of polyamide 66 at processing relevant cooling conditions and high supercooling. Thermochimica Acta, vol. 603, p. 103-109.

Schick, C. (2009). Differential scanning calorimetry (DSC) of semi-crystalline polymers. Bioanalytical Chemistry, vol. 395, p. 1589-1611.

Schneider W., Köppl A., Berger, J. (1988). Non-isothermal crystallization: Crystallization of polymers. System of rate equations, International Polymer Processing, vol. 2, n° 3-4, p. 151-154.

Tardif X., Pignon B., Boyard N., Schmelzer J.W.P., Sobotka V., Delaunay D., Schick C. (2014). Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter. Polymer Testing, vol. 36, p. 10–19.

Zhuravlev E., Schick C. (2010). Fast scanning power compensated differential scanning nanocalorimeter: 1. The device. Thermochimica Acta, vol. 505, n° 1-2, p. 1–13.