Modélisation et définition d’une cellule élémentaire statistiquement représentative

Modélisation et définition d’une cellule élémentaire statistiquement représentative

François Rasselet Sébastien Joannes Jacques Renard Emilie Roche Sébastien Pautard 

Centre des Matériaux MINES ParisTech, PSL - Research University, MAT CNRS UMR 7633, BP87 91003 Evry, France

SAFRAN Composites 33 Avenue de la gare, 91760 Itteville, France

Corresponding Author Email: 
francois.rasselet@mines-paristech.fr, francois.rasselet@safrangroup.com
Page: 
231-264
|
DOI: 
https://doi.org/10.3166/RCMA.26.231-264
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 August 2016
| Citation
Abstract: 

Obtaining the effective properties of a composite material needs the use or more or less sophisticated models. If a full field method allows validating, even calibrating, mean field approaches, such a calibration can be pertinent only if the full field model is representative of the material behavior. The work presented in this article concerns the compromise to find between the considered microstructure size and its representability. First, a statistically representative cells element (SRCE) of a unidirectional short-fiber composite is defined. In order to do this, the geometrical and morphological parameters, and the mechanical properties of over 180 different cells are compared and analyzed. In the form of an experimental plan, the geometrical and morphological data feed a 3D modeler which supports a mesh that is adapted to the microstructure.

Keywords: 

rve, statiscally representative element cell, finite elements, performance indicators, morphology, matrix confinement

Extended abstract
1. Introduction
2. Méthode
3. Définition des indicateurs globaux et choix de la CESR
4. Résultats
5. Méthode de compréhension de l’influence de la microstructure sur le comportement global
6. Conclusions
7. Perspectives
  References

Berthelot J.-M. (2012). Matériaux Composites : Comportement mécanique et analyse des structures, 5e ed. Lavoisier.

Blassiau S. (2005). Modélisation des phénomènes microstructuraux au sein d’un composite unidirectionnel carbone/epoxy et prédiction de durée de vie : contrôle et qualification de réservoirs bobinés. Thèse de doctorat, École Nationale Supérieure des Mines de Paris.

Cayzac H.-A. (2014). Analyses expérimentale et numérique de l’endommagement matriciel d’un matériau composite: Cas d’un pultrudé thermoplastique renforcé de fibres de verre. Thèse de doctorat, École Nationale Supérieure des Mines de Paris.

Christensen J., Bastien C. (2015). Nonlinear optimization of vehicle safety structures : Modeling of structures subjected to large deformations. Butterworth-Heinemann.

Christensen R.M. (1979). Mechanics of composite materials, Wiley & Sons.

Comin C.H., Santos J.R., Corradini D., Morrison W., Curme C., Rosene D.L., Gabrielli A., da F. Costa L., Stanley H.E. (2014). Statistical physics approach to quantifying differences in myelinated nerve fibers. Scientific Reports, Vol 4, 11.

Crevel J. (2014). Etude et modélisation du comportement et de l’endommagement d’un composite injecté à matrice PEEK renforcée de fibres courtes de carbone. Thèse de Doctorat, Université Toulouse 3 - Paul Sabatier, Institut Supérieur de l’Aéronautique et de l’Espace.

De S.K., White J.R. (1996). Short fibre-polymer composites. Woodhead Publishing.

Descamps P., Van Wassenhove G., Teixeira S., Beaucarne G., (2015). Using a Monte-Carlo model to identify best filler arrangement in thermally conductive materials. Microelectronics Journal, Vol. 46, p. 1179-1184.

Dirrenberger J. (2012). Propriétés effectives de matériaux architecturés. Thèse de Doctorat, Ecole Nationale Supérieure des Mines de Paris.

Escoda J. (2012). Modélisation morphologique et micromécanique 3D de matériaux cimentaires. Thèse de Doctorat, Ecole Nationale Supérieure des Mines de Paris.

E-Xstream (2014). Digimat 5.1.2 User Manual.

Forest S. (2006). Milieux continus généralisés et matériaux hétérogènes. Presses des Mines.

Gehring F. (2013). Étude du comportement mécanique et de l’endommagement de composites thermoplastiques renforcés de fibres courtes de chanvre : approche expérimentale et modélisation. Thèse de doctorat, Université de Lorraine.

Ghossein E., Lévesque M. (2012). A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites. International Journal of Solids and Structures, Vol. 49, p. 1387-1398.

Gitman I.M., Askes H., Sluys L.J. (2007). Representative volume: Existence and size determination, Engineering Fracture Mechanics, Vol. 74, p. 2518-2534.

Gusev A.A. (1997). Representative volume element size for elastic composites : A numerical study. Journal of the Mechanics and Physics of Solids, Vol. 45, p. 1449-1459.

Hazanov S., Huet C. (1994). Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. Journal of the Mechanics and Physics of Solids, Vol. 42, p. 1995-2011.

Hill R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, Vol. 5, p. 357-372.

Hollister S.J., Kikuchi N. (1992). A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational Mechanics, Vol. 10, p. 73-95.

Hooke R. (1678). Lectures de Potentia Restitutiva, or of spring explaining the power of springing bodies. John Martyn.

Jean A. (2009). Etude d’un élastomère chargé de la nanostucture au macro-comportement. Thèse de doctorat, École Nationale Supérieure des Mines de Paris.

Joyot P., Rakotomalala R., Touratier M. (1993). Modélisation de l’usinage formulée en Euler-Lagrange arbitraire, Journal de Physique IV, Vol. 3, p. 1141-1144.

Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D. (2003). Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of Solids and Structures, Vol. 40, p. 3647-3679.

Lantuéjoul C. (1990). Ergodicity and integral range. Journal of Microscopy, Vol. 161, p. 387-508.

Mariayyah R. (2007). Experimental and numerical studies on ductile regime machining of silicon carbide and silicon nitride. Thèse de Doctorat, University of North Carolina.

Matheron G. (1971). The theory of regionalized variables and its applications. École nationale supérieure des Mines de Paris.

Megally A. (2005). Étude et modélisation de l’orientation de fibres dans des thermoplastiques renforcés. Thèse de doctorat, École Nationale Supérieure des Mines de Paris.

Michaud V., Mortensen A. (2001). Infiltration processing of fibre reinforced composites: governing phenomena. Composites Part A : Applied Science and Manufacturing, Vol. 32, p. 981-996.

Moussaddy H. (2013). A new definition of the representative volument element in numerical homogenization problems and its application to the performance evaluation of analytical homogenization models. Thèse de doctorat, École Polytechnique de Montréal.

Nemat-Nasser S., Hori M. (2013). Micromechanics : Overall properties of heterogeneous materials. Elsevier.

Nimdum P. (2009). Dimensionnement en fatigue des structures ferroviaires en composites épais. Thèse de doctorat, École Nationale Supérieure des Mines de Paris.

Ostoja-Starzewski M. (2006). Material spatial randomness : From statistical to representative volume element. Probabilistic Engineering Mechanics, Vol. 21, p. 112-132.

Ratner B.D.( 2004). Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed. Elsevier Academic Press.

Rochette P., Labossière P. (2000). Axial testing of rectangular column models confined with composites. Journal of Composites for Construction, Vol. 4, p. 129-136.

Rubinstein R.Y. (1981). Simulation and the Monte Carlo Method. Wiley.

Simulia-Dassault Systems (2014). Abaqus 6.14.1 User Manual.

Z-set 8.6 User Manual (2015).