# Analytical investigation of heat transfer of solar air collector by Adomian decomposition method

Analytical investigation of heat transfer of solar air collector by Adomian decomposition method

Mohamed KezzarIsmail Tabet Meriem Chieul Noureddine Nafir Abdelkader Khentout

Department de Génie Mécanique, Faculté de Technologie, Université 20 Août 1955 Skikda , Algérie

Department de Physique, Faculté des Sciences , Université 20 Août 1955 Skikda, Algérie

Département de Génie Electrique, Faculté de Technologie, Université 20 Août 1955 Skikda, Algérie

Département de Forage, Faculté d’hydrocarbure, Université de Ouargla, Algérie

Corresponding Author Email:
tabet21@yahoo.fr
Page:
40-45
|
DOI:
https://doi.org/10.18280/mmep.050106
14 Febuary 2018
|
Accepted:
15 March 2018
|
Published:
31 March 2018
| Citation

OPEN ACCESS

Abstract:

The Adomian decomposition method (ADM) is applied in this paper to investigate the heat transfer in solar air collector. Results obtained using Adomian decomposition method (ADM) and the numerical Runge–Kutta fourth-order method are compared. The Adomian decomposition method (ADM) is effective for finding exact solutions of differential equations. Several parameters, such as air mass flow, width, and length of the collector, the effect of efficiency of the solar air collector. The increase in air mass flow improves the efficiency of solar air collector, whereas the dimensions of the collector are a negatively effect on the efficiency of the solar air collector.

Keywords:

solar air collector, thermal efficiency, analytic solution, decomposition method Adomian

1. Introduction
2. Mathematical Modeling
4. Results and Discussion
5. Conclusion
Nomenclature
References

[1] Ibrahim Z, Ibarahim Z, Yatim B, Hafidz MR. (2013). Thermal efficiency of single-pass solar air collector, AIP Conference Proceedings 1571: p. 90 .

[2] Ghasemi SE, Hatami M, Ganji DD. (2013). Analytical thermal analysis of air-heating solar collectors, Journal of Mechanical Science and Technology, 27(11): 3525-3530.

[3] Ravi KR, Rajeshwer PS, (2016). A review on different techniques used for performance enhancement of double pass solar air heaters, Renewable And Sustainable Energy Reviews 56: 941–952.

[4] Lin WX, Gao WF, Liu T. (2006). A parametric study on the thermal performance of cross-corrugated solar air collectors. Applied Thermal Engineering 26: 1043–1053

[5] Rajarajeswari K, Sreekumar A. (2016). Matrix solar air heaters–a review, Renewable and Sustainable Energy Reviews (57): 704-712.

[6] Changa W, Wang YF, Li M, Luo X, Ruan YB, Hong YR, Zhang SB. (2015). The theoretical and experimental research on thermal performance of solar air collector with finned absorber. Energy Procedia (70): 13-22.

[7] Gorji M, Hatami M, Hasanpour A, Ganji DD. (2012). Nonlinear thermal analysis of solar air heater for the purpose of energy saving. Ironical Journal of Energy & Environment 3(4): 362-370.

[8] Hasanpour A, Omra MP, Ashoryneja HR, Ganji DD, Hussein AK, Moheimani R. (2011). Investigation of heat and mass transfer of MHD

flow over the movable permeable plumb surface using HAM, Middle-East Journal of Scientific Research, 9(4): 510-515.

[9] Loufouilou JM, Bissanga G, Francis B, Youssou P. (2013). Application of adomian decomposition method to solving some kinds of partial differential equations and system of partial differential equations of partial differential equations, International Journal of Advanced Mathematical Sciences 1(4): 190-198

[10] Tabet I, Kezzar M, Touafek K, Bellel N, Gherieb S, Khelifa A, Adouane M. (2015). Adomian decomposition method and padé approximation to determine fin efficiency of convective straight fins in solar air collector, international journal of mathematical modelling & computations, 5(4): 335-346.

[11] Babolian E, Vahidi AR, Azimadeh ZA. (2012). Comparison between adomian’s decomposition method and the      homotopy pertutbation method for solving nonlinear differential equations. Journal of Applied Sciences 12(8): 793-797.

[12] Arslanturk C. (2005). A decomposition method for fin efficiency of convective straightfins with temperature-dependent thermal conductivity. International Communications in Heat and Mass Transfer (32): 831–841.

[13] Marinca V, Herişanu N. (2008). Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, International Communications in Heat and Mass Transfer, 35: 710–715.

[14] Lesnic D, Elliott L. (1999). The decomposition approach to inverse heat conduction, Journal of Mathematical Analysis and Applications 232(1): 82.

[15] Lesnic. (2002). Convergence of Adomian’s Decomposition Method:  Periodic Temperatures Computers and Mathematics with Applications 44(13).

[16] Lesnic DD, Heggs PJ. (2004). A decomposition method for power-law fin-type problems, International Communications in Heat and Mass Transfer 31: 673.

[17] RREA Rural Renewable Energy Alliance, www.rreal.org.