Synthesis and Characterization of Fe2O3/Reduced Graphene Oxide Nanocomposite as a High-Performance Anode Material for Sodium-Ion Batteries

Synthesis and Characterization of Fe2O3/Reduced Graphene Oxide Nanocomposite as a High-Performance Anode Material for Sodium-Ion Batteries

Vincenza Modafferi Michele Fiore Enza Fazio Salvatore Patanè Claudia Triolo Saveria Santangelo Riccardo Ruffo Fortunato Neri Maria G. Musolino*

DICEAM, Università Mediterranea di Reggio Calabria, Reggio Calabria 89122, Italy

Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano 20125, Italy

MIFT, Università di Messina, Messina 98166, Italy

Corresponding Author Email: 
mariagrazia.musolino@unirc.it
Page: 
129-134
|
DOI: 
https://doi.org/10.18280/mmc_b.870303
Received: 
5 March 2018
| |
Accepted: 
16 April 2018
| | Citation

OPEN ACCESS

Abstract: 

Hematite/reduced graphene oxide (Fe2O3/rGO) nanocomposite was successfully fabricated via a facile solvothermal reaction of iron precursor solution and GO leading to simultaneous deposition of iron oxide nanoparticles and in situ reduction of GO without any reducing agent. Texture and morphology, microstructure, chemical and surface composition of the nanocomposite were investigated by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, thermo-gravimetric analysis and X-ray photoelectron spectroscopy, respectively. Its electrochemical performance as anode material for sodium ion batteries was preliminarily evaluated via galvanostatic cycling. The results prove that the Fe2O3 nanoparticles are uniformly anchored onto the surface of graphene nanosheets and that the Fe2O3/rGO nanocomposite shows interestingly higher specific capacities compared to the bare Fe2O3.

Keywords: 

α- Fe2O3, reduced graphene oxide, solvothermal method, anode, sodium-ion batteries

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
  References

[1] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J. (2011). Electrochemical energy storage for green grid. Chem. Rev. 111(5): 3577–3613. http://dx.doi.org/10.1021/cr100290v

[2] Gagliano A, Nocera F. (2017). Analysis of the performances of electric energy storage in residential applications. International Journal of Heat and Technology 35(S1): S41-S48. https://doi.org/10.18280/ijht.35Sp0106

[3] Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. (2011). A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27): 9938-9954. http://dx.doi.org/10.1039/c0jm04225k

[4] Goodenough JB, Park K-S. (2013). The Li-Ion rechargeable battery: A Perspective. J. Am. Chem. Soc. 135(4): 1167–1176. http://dx.doi.org/10.1021/ja3091438

[5] Scrosati B, Hassounab J, Sun YK. (2011). Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9): 3287-3295. http://dx.doi.org/10.1039/ c1ee01388b

[6] Slater MD, Kim D, Lee E, Johnson CS (2013). Sodium-ion batteries. Adv. Funct. Mater. 23(8): 947–958. http://dx.doi.org/10.1002/adfm.201200691

[7] Kundu D, Talaie E, Duffort V, Nazar LF. (2015). The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54(11): 3431-3448. http://dx.doi.org/10.1002/anie.201410376

[8] Wang Y, Chen R, Chen T, Lv H, Zhu G, Ma L, Wang C, Jin Z, Liu J. (2016). Emerging non-lithium ion batteries. Energy Storage Mater. 4: 103–129. http://dx.doi.org/10.1016/j.ensm.2016.04.001

[9] Peters J, Buchholz D, Passerini S, Weil M. (2016). Life cycle assessment of sodium-ion batteries. En. Environ. Sci. 9(5): 1744-1751. http://dx.doi.org/10.1039/C6EE00640J

[10] Jian Z, Zhao B, Liu P, Li F, Zheng M, Chen M,  Shi Y, Zhou H. (2014). Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 50(10): 1215-1217. http://dx.doi.org/10.1039/C3CC47977C

[11] Fu Y, Wei Q, Wang X, Zhang G, Shu H, Yang X, Tavares AC, Sun S. (2016). A facile synthesis of Fe3O4 nanoparticles/graphene for high performance lithium/sodium-ion batteries. RSC Adv. 6(20): 16624-16633. http://dx.doi.org/10.1039/C5RA25835A

[12] Li F, Jiang X, Zhao J, Zhang S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 16: 488-515. https://doi.org/10.1016/j.nanoen.2015.07.014

[13] Zhu J, Zhu T, Zhou X, Zhang Y, Lou XW, Chen X, Zhang H, Hng HH, Yan Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3(3): 1084-1089. http://dx.doi.org/10.1039/C0NR00744G

[14] Zhang ZJ, Wang YX, Chou SL, Li HJ, Liu HK, Wang JZ. (2015). Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. J. Power Sources 280: 107-113. https://doi.org/10.1016/j.jpowsour.2015.01.092

[15] Hummers Jr. WS, Offeman RE. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80(6): 1339-1339. http://dx.doi.org/10.1021/ja01539a017

[16] Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL. (2001). Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11): 639-642. http://dx.doi.org/10.1016/S1388-2481(01)00244-2

[17] Fathy M, Gomaa A, Taher FA. El-Fass MM, Kashyout AEl-HB. (2016). Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 51(12): 5664–5675. http://dx.doi.org/10.1007/s10853-016-9869-8

[18] Wang HW, Hu ZA, Chang YQ, Chen YL, Zhang ZY, Yang YY, Wu HY. (2011). Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater. Chem. Phys. 130(1-2): 672–679. https://doi.org/10.1016/j.matchemphys. 2011.07.043

[19] Wang YX, Chou SL, Liu HK, Dou SX. (2013). Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57: 202-208. http://dx.doi.org/10.1016/j.carbon.2013.01. 064

[20] Liu X, Chen T, Chu H, Niu L, Sun Z, Pan L, Sun CQ. (2015). Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim. Acta 166(1): 12-16. https://doi.org/10.1016/j.electacta.2015.03.081

[21] Ferrari AC, Robertson J. (2001). Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61(20): 14095–14107. http://dx.doi.org/10.1103/PhysRevB.61.14095

[22] Santangelo S. (2016). Controlled surface functionalisation of carbon nanotubes by nitric acid vapors generated from sub-azeotropic solution. Surf. Interf. Analysis 48(1): 17–25. https://doi.org/10.1002/sia.5875

[23] Zhang R, Santangelo S, Fazio E, Neri F, D’Arienzo M, Morazzoni F, Zhang Y, Pinna N, Russo PA. (2015). Stabilization of TiO2 nanoparticles at the surface of carbon nanomaterials promoted by microwave heating. Chemistry – A European Journal 21(42): 14901–14910. https://doi.org/10.1002/chem. 201502433

[24] Chernyshova IV, Hochella Jr M., Madden AS. (2007). Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 9(14): 1736–1750. http://dx.doi.org/10.1039/B618790K

[25] Chaudhari S, Srinivasan M. (2012). 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 22(43): 23049–23056. http://dx.doi.org/10.1039/C2JM32989A

[26] Cesar I, Sivula K, Kay A, Zboril R, Grätzel M. (2009). Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113(2): 772–782. http://dx.doi.org/ 10.1021/jp809060p

[27] Santangelo S, Frontera P, Pantò F, Stelitano S, Marelli M, Malara F, Patané S, Dal Santo V, Antonucci PL. (2017).  Effect of Ti- or Si-doping on nanostructure and photo-electro-chemical activity of electro-spun iron oxide fibres. Int. J. Hydrogen En. 42(46): 28070-28081. http://dx.doi.org/10.1016/j.ijhydene.2017.03. 204

[28] Bersani D, Lottici PP, Montenero A. (1999). Micro-Raman Investigation of Iron Oxide Films and Powders Produced by Sol–Gel Syntheses. J. Raman Spectrosc. 30(5): 355–360. https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<355:AID-JRS398>3.0.CO;2-C

[29] Santangelo S, Piperopoulos E, Fazio E, Faggio G, Ansari S, Lanza M, Neri F, Messina G, Milone C. (2014). A safer and flexible method for the oxygen functionalisation of carbon nanotubes by nitric acid vapors. Appl. Surf. Sci. 303: 446–455. https://doi.org/10.1016/j.apsusc.2014.03.023

[30] Baltrusaitis J, Cwiertny DM, Grassian VH. (2007). Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys. Chem. Chem. Phys. 9(41): 5542–5554.  http://dx.doi.org/10.1039/b709167b

[31] Saremi-Yarahmadi S, Wijayantha KGU, Tahir AA, Vaidhyanathan B. (2009). Nanostructured α-Fe2O3 electrodes for solar driven water splitting: effect of doping agents on preparation and performance. J. Phys. Chem. C 113(12): 4768–4778. http://dx.doi.org/10.1021/jp808453z

[32] Klein F, Jache B, Bhide A, Adelhelm P. (2013). Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 15(38): 15876-15887. http://dx.doi.org/10.1039/c3cp52125g

[33] Fiore M, Longoni G, Santangelo S, Pantò F, Stelitano S, Frontera P, Antonucci PL, Ruffo R. (2018). Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Elettrochim. Acta 269: 367-377. http://dx.doi.org/10.1016/j.electacta.2018.02.161