Ionic Conduction Characteristics of C8mimX Ionic Liquids and Their Hybrids Towards Application to Charge and Lithium-Ion Storage

Ionic Conduction Characteristics of C8mimX Ionic Liquids and Their Hybrids Towards Application to Charge and Lithium-Ion Storage

Mengxin Liu
Hong Huang*

Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio, USA

Corresponding Author Email: 
hong.huang@wright.edu
Page: 
199-203
|
DOI: 
https://doi.org/10.14447/jnmes.v21i4.a01
Received: 
January 09, 2018
| |
Accepted: 
February 20, 2018
| | Citation
Abstract: 

Room temperature ionic liquids (RTILs) have attracted much attention in electrochemical energy storage systems for their advantageous properties over traditional lithium salt/carbonate solvent electrolytes in terms of negative vapor pressure and non-flammability. RTILs can be used as the solvent-free electrolytes in electrochemical double layer capacitors or act as the important addi-tives to the carbonate electrolytes in lithium-ion batteries and lithium-ion capacitors. Compared with the common 1-ethyl-3-methylimidazolium (C2mim+)-based systems, long-chained RTILs are advantageous for their high electrochemical stability (up to 7V vs Li/Li+) which have the potential to double the operating voltage and energy density. This study is to report ionic conducting characteristics of 1-octyl-3-methylimidazolium (C8mim+) based RTILs, i.e. C8mimX (X = BF4-, PF6-, and Cl-) and their hybrids with diethyl carbonate (DEC) solvent as well as the traditional Li-ion electrolyte like 1M LiPF6-EC/DEC (1:1) at various preset molar ratios. The influences of the hybrid electrolyte composition and temperature on the ionic conduction characteristics were systematically studied.

Keywords: 

ionic liquids, conduction, hybrids, molar composition, activation energy, energy storage

1. Introduction
2. Experimental Aspects
3. Results and Discussion
4. Conclusion
  References

[1] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nature Materials, 8, 621 (2009).

[2] P. Simon and Y. Gogotsi, Nature Materials, 7, 845 (2008).

[3] M. Mousavi, B. Wilson, S. Kashefolgheta, E. Anderson, S, He, P. Bühlmann, and A. Stein, ACS Appl. Mater. Interfaces, 8, 3396 (2016).

[4] M. Galinski, A. Lewandowski, and I. Stepniak, Electrochimica Acta, 51, 5567 (2006).

[5] H. Nakagawa , Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, K. Tatsumi, J. Power Sources, 174, 1021 (2007).

[6] A. Lewandowski , A. Swiderska-Mocek, J. Power Sources, 194, 601 (2009).

[7] T. Dato, G. Masuda, and K. Takagi, Electrochimica Acta, 49, 3603 (2004).

[8] K. Abatain, G. Babu, X. Lin, M.-T. Rodrigues, H. Gullapalli, P. Ajayan, M. Grinstaff, and L. Arava, ACS Appl. Mater. Inter-faces, 8, 15242 (2016).

[9] H. Sakaebe, H. Matsumoto, Electrochemistry Communications, 5, 594 (2003).

[10] H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, and M. Watanabe, J. Phys. Chem. B, 109, 6103 (2005).

[11] N. Papaoconomou, O. Zech, P. Bauduin, J. Leveque, W. Kunz, Electrochimica Acta, 70, 124 (2012).

[12] M. Huie, R. Dileo, A. C. Marschilok, K.J. Takeuchi, and E.S. Takeuchi, ACS Appl. Mater. Interfaces, 7, 11724 (2015).

[13] H. Srour, L. Chancelier, E. Bolimowska, T. Gutel, S. Mailley, H. Rouault, and C. C. Santini, J. Appl. Electrochem., 46, 149 (2016).

[14] L.Wu, R. I. Venkatanarayananan, X. Shi, D. Roy, and S. Krish-nan, J. Molecular liquids, 198, 398 (2014).

[15] Y. An, P. Zuo, X. Cheng, L. Liao, and G. Yin, Int. J. Electro-chem. Sci., 6, 2398 (2011).

[16] A. Hofmann, M. Schulz, T. Hanemann, In. J. Electrochem. Sci., 8, 10170 (2013).

[17] T.Wu, L.Hao, C.Kuo, Y.Lin, S.Su, P.Kuo, I.Sun, J. Electro-chem. Sci., 7, 2047 (2012).

[18] H. Niedermeyer, J. P. Hallett, I. Villar-Garcia, P. Hunt, and T. Welton, Chem. Sco. Rev., 41, 7780 (2012).

[19] M.T. Clough, C.R.Crick, J. Grasvik, P.A. Hunt, H. Niedermey-er, T. Welton, and O.P. Whitaker, Chem. Sci., 6, 1101 (2015).

[20] H. Ning, M. Hou, Q. Mei, Y.Liu, D. Yang, and B. Han, Sci-ence China: Chemistry, 55, 1509 (2012).

[21] H. Every, A. Bishop, M. Forsyth, and D. MacFarlane, Electro-chemica Acta, 45(89), 1279 (2000).

[22] H. Wang, J. Wang, S. Zhang, Y. Pei, K. Zhuo, Chem. Phy-Chem., 10, 2516 (2009).

[23] Z. Zhang, X. Gao, and L. Yang, Chinese Science Bulletin, 50, 2005 (2005).

[24] R. Dileo, A. Marschilok, K. Takeuchi, and E. Takeuchi, Elec-trichemica Acta, 109, 27 (2013).

[25] H. Xiang, B. Yin, H. Wang, H. Lin, X. Ge, X. Xie, C. Chen, Electrochimica Acta, 55, 5204 (2010).

[26] I. Voroshylova, S. Smaga, E. Lukinova, V. Chaban, O. Ka-lugin, J. Mol. Liquids, 203, 7 (2015).

[27] A. Zhu, J. Wang, L. Han, M. Fan, Chem Eng. J., 147, 27 (2009).

[28] O. Kalugin, U. Voroshylova, A. Riabchunova, E. Lukinova, V. Chaban, Electrochemica Acta, 105, 188 (2013).

[29] S. Katsuda, K. Imai, Y. Kudo, Y. Takeda, H. Seki, and M. Nakakoshi, J. Chem. Eng. Data, 53, 1528 (2008).

[30] M. Liu, Studies of Ionic Liquid Hybrids: Characteristics and Their Potential Application to Li-ion Batteries and Li-ion Ca-pacitors, Master Thesis, 2017.

[31] S. Kazemiabnavi, Z. Zhang, K. Thornton, and S. Banerjee, J. Phys. Chem. B, 120, 5691 (2016).

[32] S. Zhang, N. Sun, X. He, X. Li, X. Zhang, J. Phys. Chem. Ref. Data, 35(4), 1475 (2006).

[33] A. Stoppa, O. Zech, W. Kunz, and R. Buchner, J. Chem. Eng. Data, 55, 1768 (2010).

[34] H. Donald, B. Jenkins, H.K. Roobottom, J. Passmore and L. Glasser, Inorg. Chem., 38, 3609 (1999).

[35] H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, and M. Watanabe, J. Phys. Chem. B, 108, 16593 (2004).

[36] K. M. Dieter; C.J. Dymek; N.E. Heimer; J. W. Rovang; J.S. Wilkes, J. Am. Chem. Soc., 110, 2726 (1988).

[37] K. Dong, S. Zhang, D. Wang, and X. Yao, J. Phys. Chem. A, 110, 9775 (2006).

[38] J. Leys, M. Wubbenhorst, C. Menon, R. Rajesh, J. Thoen, C. Glorieux, P. Nockemann, B. Thijs, K. Binnemans, S. Longue-mart, J. Chem Phys., 128, 064509 (2008).

[39] K.R. Seddon, A. Stark, M.J. Torres, Pure Appl. Chem., 72, 2275 (2000).

[40] A. Stoppa, J. Hunger, R. Buchner, J. Chem. Eng. Data, 54, 472 (2009).