Investigation of Dilution Agent Effect Onto Interactions Between Methylene Blue and DNA Using Carbon Fiber Based DNA Biosensor

Investigation of Dilution Agent Effect Onto Interactions Between Methylene Blue and DNA Using Carbon Fiber Based DNA Biosensor

Erkan Dogru* Elif Erhan Osman Atilla Arikan

Department of Environmental Engineering, Istanbul Technical University, Istanbul, 34469, Turkey

Department of Bioengineering, Uskudar University, Istanbul, 34662, Turkey

Corresponding Author Email: 
dogru16@yahoo.com
Page: 
65-70
|
DOI: 
https://doi.org/10.14447/jnmes.v20i2.262
Received: 
15 December 2016
| |
Accepted: 
28 April 2017
| | Citation
Abstract: 

This paper focuses on the dilution agent effect onto interactions between methylene blue (MB) and DNA using carbon fiber microelectrode (CFME) based DNA biosensor. In this study, designed CFME based DNA biosensor was successfully carried out considering the effect of probe dilution agent (e.g. 3-mercaptopropionic acid) against proposed hybridization mechanism types. The voltammetric signals of MB were measured at bare CFME, single-stranded DNA (ssDNA)-modified CFME and double-stranded DNA (dsDNA)-modified CFME by means of square wave voltammetry (SWV). The electrochemical parameters for MB on binding to DNA onto single CFME in the solution and at the electrode surface were described. This study shows that probe dilution agent is a significant factor to determine the type of DNA hybridization mechanisms.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] Palchetti I., and Mascini M., Analyst, 133, 846 (2008).

[2] Rauf S., Gooding J.J., and Akhtar K., J. Pharm. Biomed. Anal., 37, 205 (2005).

[3] Arias P., Ferreyra N.F., and Rivas G.A., J. Electroanal. Chem., 634, 123 (2009).

[4] Santos-Álvarez P., Lobo-Castanon M.J., and Miranda-Ordieres, A.J, Anal Bioanal Chem., 378, 104 (2004).

[5] Odenthal K.J, and Gooding J., J. Analyst, 132, 603 (2007).

[6] Farjami E., Clima L., and Gothelf K.V., Analyst, 135, 1443 (2010).

[7] Erdem A., Kerman K., and Meric B., Analytica Chimica Acta, 422, 139 (2000).

[8] Tani A., Thomson A.J., and Butt J.N., Analyst, 126, 1756 (2001).

[9] Boon E.M., Ceres D.M., and Drummond T.G., Nat. Biotech-nol., 18, 1096 (2000).

[10]Yang W., Ozsoz M., and Hibbert D.B., Electroanalysis, 14, 1299 (2002).

[11]Kerman K., Ozkan D., and Kara P., Anal. Chim. Acta, 462, 39 (2002).

[12]Ostatna V., Dolinnaya N., and Andreev S., Bioelectrocliemis-try, 67, 205 (2005).

[13]Jin Y., Yao X., and Liu Q., Biosensors & Bioelectronics, 22, 1126 (2007).

[14]Zhu L., Zhao R., and Wang K., Sensors, 8, 5649 (2008).

[15]Chen J., Zhang J., and Wang K., Anal. Chem., 80, 8028 (2008).

[16]Zuo S.H., Zhang L.F., and Yuan H.H., Bioelectrochemistry, 74, 223 (2009).

[17]Ozkan D., Kara P., and Kerman K., Bioelectrochemistry, 58, 119 (2002).

[18]Pan D., Zuo X., and Wan Y., Sensors, 7, 2671 (2007).

[19]Erdem A., Kerman K., and Meric B., Electroanalysis, 13, 219 (2001).

[20]Uslu B., and Ozkan S.A., Analytical Letters, 40, 817 (2007).

[21]Jiang X., and Lin X., Analyst, 130, 391 (2005).

[22]Sarac A.S., Dogru E., and Ates M., Turk. J. Chem., 30, 401 (2006).

[23]Zhang M., Liu K., and Xiang L., Anal. Chem., 79, 6559 (2007).

[24]Lu L., Wang S., and Lin X., Analytical Sci., 20, 1131 (2004).

[25]Lin X., Wu P., and Chen W., Talanta, 72, 468 (2007).

[26]Kelley S.O., Boon E.M., and Barton J. K., Nucleic Acids Res., 27, 4830 (1999).

[27]Liu T., and Barton J.K., J. Am. Chem. Soc., 127, 10160 (2005).

[28]Pividori M.I., Merkogi A., and Alegret S., Biosens. and Bioelectron., 15, 291 (2000).

[29]Wang J., Wang F., and Dong S., J. Electroanal. Chem., 626, 1 (2009).

[30]Pan H., Yu H., and Wang N., J. of Biotech., 214, 133 (2015).

[31]Wang J., Shi A., and Fang X., Anal. Biochem., 469, 71 (2015).