Electrochemical Behavior and Convoluted Voltammetry of Carbon Nanotubes Modified with Anthraquinone

Electrochemical Behavior and Convoluted Voltammetry of Carbon Nanotubes Modified with Anthraquinone

Mohamed A. Ghanem Ibrahim S. El-Hallag* Abdullah M. Al-Mayouf

Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudia Arabia

Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt

Corresponding Author Email: 
mghanem@ksu.edu.sa
Page: 
25-30
|
DOI: 
https://doi.org/10.14447/jnmes.v20i1.291
Received: 
23 August 2016
| |
Accepted: 
15 January 2017
| | Citation
Abstract: 

The validity of convolution voltammetry for determination accurate values of diffusion coefficient (D) and electrons number (n) consumed in electrochemical reaction has been explained by applying the technique to a carbon nanotubes chemically modified using func-tional groups of anthraquinone(AQ). The analysis with macrodisk electrode was facilitated due to the presence of minor contribution of nonfaradaic current, so moderate values of sweep speed can be used without subtraction of residual current to quantify the diffusivity of electro-active species.The values of D and nCb were determined simultaneously and demonstrated using convoluted procedure. The ob-tained results indicate that the convolution voltammetry provides advantages over constant state methods (plateau) such as micro-disk electrode voltammetry and rotating disk electrode voltammetry, as it is not limited by the method of diffusion (planar or radial), which remove the limitations of solvent viscosity, geometry of electrode, and voltammetric sweep speed.

Keywords: 

convolution voltammetry, diffusion coefficient, digital simulation, heterogeneous rate constant

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgment
  References

[1] M. E. G. Lyons and G. P. Keedey, Int. J. Electrochem. Sci., 3, 819 (2008).

[2] M. E. G. Lyons, Int. J. Electrochem. Sci., 4, 1196 (2009).

[3] M. R. Ganjali, A. Alipour, S. Riahi, B. Larijani and P. Norouzi, Int. J. Electrochem. Sci., 4, 1262 (2009).

[4] P. Norouzi, F. Faridbod, B. Larijani and M. R. Ganjali, Int. J. Electrochem. Sci., 5, 1213 (2010).

[5] H. R. Zare and N. Nasirizadeh, Int. J. Electrochem. Sci., 4, 1691 (2009).

[6] M.A. Ghanem, J.M. Chrétien, J.D. Kilburn, P.N. Bartlett, Journal of Materials Chemistry, 18, 4917 (2008).

[7] M. Chrétien, M.A. Ghanem, P.N. Bartlett, J.D. Kilburn, Chemistry - A European Journal, 14, 2548 (2008).

[8] M.A. Ghanem, J.M. Chrétien, J.D. Kilburn, P.N. Bartlett, Bioelectrochemistry, 76, 115 (2009).

[9] J.M. Chrétien, M.A. Ghanem, P.N. Bartlett, J.D. Kilburn, Chemistry - A European Journal, 15, 11928 (2009).

[10]M.A. Ghanem, I. Kocak, A. Al-Mayouf, M. AlHoshan, P.N. Bartlett, Electrochimica Acta, 68, 74 (2012).

[11]C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Chemical Communications, 829 (2005).

[12]J.D. Watkins, K. Lawrence, J.E. Taylor, T.D. James, S.D. Bull, F. Marken, Electroanalysis, 23, 1320 (2011).

[13]K. Sadowska, K.P. Roberts, R. Wiser, J.F. Biernat, E. Jabłonowska, R. Bilewicz, Carbon, 47, 1501 (2009).

[14]E. Laviron, Journal of Electroanalytical Chemistry, 101, 19 (1979).

[15]Bowden; W. J.; J. Electrochem. Soc., 129, 124 (1982).

[16]E.H. Wong, R.M. Kabbani, Inorg. Chem., 19, 451 (1980).

[17]J. Galvez, Su. M. Park. J. Electroanal. Chem., 235, 71 (1987).

[18]A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980.

[91]I.S. El-Hallag, A.M. Hassanien. Collect. Czech. Chem. Commun., 64, 1953 (1999).

[20]I.S. El-Hallag, M.M. Ghoneim, Monatsh, Chem., 130, 525 (1999).

[21]A.R. Seidle, L. Todd. J. Inorg. Chem., 15, 2838 (1976).

[22]R. Hettrich, M. Kaschke, H.Wadepohl, W. Weinmann, M. Stephan, H. Pritzkow, W. Siebert, I. Hyla-Kryspin, R. Gleiter, Chem. Eur. J., 2, 487 (1996).

[23]J. Bould, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc. Dal-ton Trans., 563 (1992).

[24]B. Stibr, J.D. Kennedy, E. Drdakova, M. Thornton-Pett, J. Chem. Soc. Dalton. Trans., 2335 (1993).

[25]G. Doetsch, Laplace Transformation, Dover, New York, 1953.

[26]K.B. Oldham, R.A. Osteryoung, J. Electroanal. Chem., 11, 397 (1966).

[72]R. Bowling, R.L. McCreery, Anal. Chem., 60, 605 (1988).

[28]A.J. Bard, L.R. Faulkner, Electrochem. Methods, John Wiley & Sons, New York, 1980, p. 236.

[29]D. Britz, Digital Simulation in Electrochemistry, Springer, Berlin, Germany, 2005.

[30]D. Nematollahi, A. Afkhami, F. Mosaed, and M. Rafiee, “Investigation of the electro-oxidation and oxidation of cate-chol in the presence of sulfanilic acid,” Research on Chemical Intermediates, vol. 30, no. 3, pp. 299–309, 2004. View at Pub-lisher, View at Google Scholar, View at Scopus

[31]L. Khalafi and M. Rafiee, “Kinetic study of the oxidation and nitration of catechols in the presence of nitrous acid ionization equilibria,” Journal of Hazardous Materials, vol. 174, no. 1-3, pp. 801–806, 2010. View at Publisher, View at Google Scholar, View at Scopus

[32]J. Leddy, A.J. Bard, J. Electrolanal. Chem., 189, 203 (1985).

[33]J.A. Garrido, R.M. Rodriguez, R.M. Bastido, and E. Brillas, J. Electroanal. Chem., 324, 19 (1992).

[34]E. Laviron, J. Electroanal. Chem., 101, 19 (1979).