Reagentless, Electrochemical Aptasensor for Lead (II) Detection

Reagentless, Electrochemical Aptasensor for Lead (II) Detection

Yan Lin Lin Cheng Guo Bing Wei Ling Ling He Cha Dan Chen Rong Kong De Hong Peng* Hao Fan*

Department of Pharmacy, Jiang Xi University of Traditional Chinese Medicine, Jiang Xi 330004, China

Corresponding Author Email: 
516531260@qq.com, fanhao11@aliyun.com
Page: 
1-5
|
DOI: 
https://doi.org/10.14447/jnmes.v20i1.286
Received: 
1 November 2016
| |
Accepted: 
31 January 2017
| | Citation
Abstract: 

A novel strategy for selective and sensitive amperometric detection of lead ion (Pb2+) was proposed based on target-induced conformational switch. The ferrocene-labeled aptamer thiol was self-assembled through S-Au bonding on a gold electrode surface and the surface was blocked with 2-mercaptoethanol to form a mixed monolayer. The aptamer-modified electrode was characterized electrochemically by differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The modified electrode showed a voltammetric signal due to a one-step redox reaction of the surface-confined ferrocenyl moiety of the aptamer immobilized on the electrode surface in 20mM Tris–HCl buffers buffer of pH 7.4. The “signal-on” upon Pb2+association could be attributed to a change in conformation from random coil-like configuration on the probe-modified film to the quadruplex structure. The fabricated biosensor showed a linear response to the logarithm of Pb2+ concentration over the range of 5.0×10-10 M to 1.0×10-7 M with a detection limit of 1.2×10-10 M. In addition, this strategy afforded an exquisite selectivity for Pb2+ against other metal ions. The excellent sensitivity and selectivity show good potential for Pb2+ detection in real Chinese herb samples.

Keywords: 

aptasensor, lead (II), electrochemical, reagentless

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
  References

[1] V. Meucci, S. Laschi, M. Minunni, C. Pretti, L. Intorre, G. Soldani, M. Mascini, Talanta, 77, 1143 (2009).

[2] H. Wang, Y. Kim, H. Liu, Z. Zhu, S. Bamrungsap, W. Tan, J. Am. Chem. Soc., 131, 8221 (2009).

[3] D.P. Wernette, C. Mead, P.W. Bohn, Y. Lu, Langmuir, 23, 9513 (2007).

[4] J. Li, Y. Lu, J. Am. Chem. Soc., 122, 10466 (2000).

[5] J. Liu, A.K. Brown, X. Meng, D.M. Cropek, J.D. Istok, D.B. Watson, Y. Lu, Proc. Natl. Acad. Sci. USA, 104, 2056 (2007).

[6] T. Lan, K. Furuya, Y. Lu, Chem. Commun., 46, 3896 (2010).

[7] J. Liu, Y. Lu, Anal. Chem., 75, 6666 (2003).

[8] C.B. Swearingen, D.P. Wernette, D.M. Cropek, Y. Lu, J.V. Sweedler, P.W. Bohn, Anal. Chem., 77, 442 (2005).

[9] X.B. Zhang, Z. Wang, H. Xing, Y. Xiang, Y. Lu, Anal. Chem. 82, 5005 (2010).

[10]T.S. Dalavoy, D.P. Wernette, M. Gong, J.V. Sweedler, Y. Lu, B.R. Flachsbart, M.A. Shannon, P.W. Bohn, D.M. Cropek, Lab. Chip, 8, 786 (2008).

[11]J. Liu, Y. Lu, J. Am. Chem. Soc., 125, 6642 (2003).

[12]J. Liu, Y. Lu, J. Am. Chem. Soc., 126, 12298 (2004).

[13]J. Liu, Y. Lu, J. Am. Chem. Soc., 127, 12677 (2005).

[14]Z. Wang, J.H. Lee, Y. Lu, Adv. Mater., 20, 3263 (2008).

[15]D. Mazumdar, J. Liu, G. Lu, J. Zhou, Y. Lu, Chem. Commun., 46, 1416 (2010).

[16]J. Elbaz, B. Shlyahovsky, I. Willner, Chem. Commun., 1569 (2008).

[17]T. Li, E. Wang, S. Dong, Anal. Chem., 82, 1515 (2010).

[18]C.W. Liu, C.C. Huang, H.T. Chang, Anal. Chem., 81, 2383 (2009).

[19]Y. Xiao, A.A. Rowe, K.W. Plaxco, J. Am. Chem. Soc., 129, 262 (2007).

[20]L. Shen, Z. Chen, Y. Li, S. He, S. Xie, X. Xu, Z. Liang, X. Meng, Q. Li, Z. Zhu, M. Li, X. C. Le, Y. Shao, Anal. Chem., 80, 6323 (2008).

[21]X. Yang, J. Xu, X. Tang, H. Liu, D. Tian, Chem. Commun., 46, 3107 (2010).

[22]C.L. Li, K.T. Liu, Y.W. Lin, H.T. Chang, Anal. Chem., 83, 225 (2011).

[23]Z. Lin, Y. Chen, X. Li, W. Fang, Analyst, 136, 2367 (2011).

[24]E. Palecek, M. Fojta, Anal. Chem., 66, 1566 (1994).

[25]F. Li, L. Yang, M. Chen, P. Li, B. Tang, Analyst, 138, 461 (2013).

[26]A.A. Lubin, K.W. Plaxco, Acc. Chem. Res., 43, 496 (2010).

[27]Q. Wang, L. Yang, X. Yang, K. Wang, L. He, J. Zhu, T. Su, Chem. Commun. (Camb), 48, 2982 (2012).

[28]F. Ricci, R.Y. Lai, K.W. Plaxco, Chem. Commun., 3768 (2007).

[29]A. Anne, A. Bouchardon, J. Moiroux, J. Am. Chem. Soc., 125, 1112 (2003).

[30]A.A. Lubin, R.Y. Lai, B.R. Baker, A.J. Heeger, K.W. Plaxco, Anal. Chem., 78, 5671 (2006).

[31]K.J. Cash, A.J. Heeger, K.W. Plaxco, Y. Xiao, Anal. Chem., 81, 656 (2009).

[32]Y. Xiao, A.A. Lubin, B.R. Baker, K.W. Plaxco, A.J. Heeger, Proc. Natl. Acad. Sci. USA, 103, 16677 (2006).

[33]A.J. Bard, L.R. Faulkner, Electrochemical Methods: Funda-mentals and Applications; John Wiley & Sons: New York, 1980.

[34]D.V. Leff, L. Brandt, J.R. Heath, Langmuir, 12, 4723 (1996).