Lead Corrosion and Formation of Lead Oxides from a Lead-air Cell in Methanesulfonic Acid

Lead Corrosion and Formation of Lead Oxides from a Lead-air Cell in Methanesulfonic Acid

Wan Jeffrey Basirun* Idris Mohamed Saeedc Hanieh Ghadimi Magaji Ladan Mohammad Reza Mahmoudian Mehdi Ebadi Lukman Bola Abdulrauf Zulkarnain Endut

Institute of Nanotechnology & Catalysis Research (NanoCat), Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur, Malaysia

Department of Chemistry, University Malaya, Kuala Lumpur 50603, Malaysia

Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

Department of Chemistry, Shahid Sherafat, University of Farhangian, 15916, Tehran, Iran

Department of Chemistry, Faculty of Sciences, Islamic Azad University, Gorgan, 49147-39975 Iran

Center of Foundation Studies, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Corresponding Author Email: 
wjbasirun@gmail.com
Page: 
217-222
|
DOI: 
https://doi.org/10.14447/jnmes.v19i4.278
Received: 
20 January 2016
| |
Accepted: 
15 October 2016
| | Citation
Abstract: 

The corrosion of lead in methanesulfonic acid solution in the presence of a MnO2 air cathode in a primary lead-air cell is in-vestigated. The highest power density of the lead-air cell is 2.8 mW cm-2. X-ray photoelectron spectroscopy and powder X-ray diffraction results demonstrate the formation of lead (II) oxide and lead (IV) dioxide on the air cathode after continuous discharge. Field emission scanning electron microscopy image shows that the surface coverage of lead (II) oxide and lead (IV) dioxide on the air cathode is only partial and will allow oxygen reduction.

Keywords: 

anodic dissolution, X-ray photoelectron spectroscopy, lead-air cell, lead oxides

1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusion
5. Acknowledgments
  References

[1] A. Hazza, D. Pletcher and R. Willis, Phys. Chem. Chem. Phys., 6, 1773 (2004).

[2] D. Pletcher and R. Willis, Phys. Chem. Chem. Phys., 6, 1779 (2004).

[3] R. Othman, W.J. Basirun, A.H. Yahya and A.K. Arof, J. Power Sources, 103, 34 (2001).

[4] A.A. Mohamad, J. Power Sources, 159, 752 (2006).

[5] V.G. Khomenko, V.Z. Barsukov and A.S. Katashinskii, Electro-chim. Acta, 50, 1675 (2005).

[6] S.K. Bikkarolla, P. Cumpson, P. Joseph and P. Papakonstan-tinou, Faraday Discuss., 173, 415 (2014).

[7] Z. Qiang, J.H. Chang and C.P. Huang, Water Res., 36, 85 (2002).

[8] J. Collins, X. Li, D. Pletcher, R. Tangirala, D.S. Campbell, F.C. Walsh and C. Zhang, J. Power Sources, 195, 2975 (2010).

[9] Y.L. Cao, H.X. Yang, X.P. Ai and L.F. Xiao, J. Electroanal. Chem., 557, 127 (2003).\

[10]A.B. Velichenko, R. Amadelli, E.V. Gruzdeva, T.V. Luk’yan- enko and F.I. Danilov, J. Power Sources, 191, 103 (2009).

[11]C.O. Laoire, S. Mukerjee, E.J. Plichta, M.A. Hendrickson and K.M. Abraham, J. Electrochem. Soc., 158, A302 (2011).

[12]Y.C. Zhang, T. Qiao and X.Y. Hu, J. Solid State Chem., 177, 4093 (2004).

[13]Y.L. Cao, H.X. Yang, X.P. Ai and L.F. Xiao, J. Electroanal. Chem., 557, 127 (2003).

[14]D. Devilliers, M.T.D. Thi, E. Mahé, V. Dauriac and N Lequeux, J. Electroanal. Chem., 573, 227 (2004).

[15]Y. Mohammad and D. Pletcher, Electrochim. Acta, 52, 786 (2006).

[16]P. Veluchamy and H. Minoura, Appl. Surf. Sci., 126, 241 (1998).

[17]C.T.J. Low, D. Pletcher and F.C. Walsh, Electrochem. Com-mun., 11, 1301 (2009).

[18]A. Hazza, D. Pletcher and R. Wills, J. Power Sources, 149, 103 (2005).

[19]D. Pletcher, H. Zhou, G. Kear, C.T.J. Low, F.C. Walsh and R.G.A. Wills, J. Power Sources, 180, 621 (2008).

[20]D. Pletcher, H. Zhou, G. Kear, C.T.J. Low, F.C. Walsh and R.G.A. Wills, J. Power Sources, 180, 630 (2008).

[21]H.A. Samad and P.R. Watson, Appl. Surf. Sci., 136, 46 (1998).

[22]M.M. Rahman, K.M. Krishna, T. Soga, T. Jimbo and M. Ume, J. Phys. Chem. Solids, 60, 201 (1999).

[23]K.S. Kim, T.J. O’Leary and N. Winograd, Anal. Chem., 45, 2214 (1973).