Application of Electrochemical Immuno-sensor Based on Ketamine Hydrochloride for the Detection of Sports Illicit Drugs

Application of Electrochemical Immuno-sensor Based on Ketamine Hydrochloride for the Detection of Sports Illicit Drugs

Yanyun Lei

Hunan Normal University, Changsha, Hunan, 410012, China

Corresponding Author Email: 
leiyanyun230@sina.com
Page: 
139-143
|
DOI: 
https://doi.org/10.14447/jnmes.v19i3.310
Received: 
27 April 2016
| |
Accepted: 
25 July 2016
| | Citation
Abstract: 

With the development of modern technology, the developed electrochemical immuno-sensor becomes a new kind of micro measurement technology. The electrochemical immuno-sensor based on ketamine hydrochloride was prepared in this study. Sufficient anti-bodies are combined with the electrode through adsorption of 3-mercaptopropionic acid and gold electrode. The results showed that the electrode had a specific response to antigens. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and atomic force microscope (AFM) were used for the electrode characterization. Results indicated that, the prepared electrode had good stability and re-producibility. The prepared electrochemical immuno-sensor based on ketamine hydrochloride in this study was applied to the detection of morphine content in sports illicit drugs, and we found that, such kind of sensor was appropriate for detection of illicit drugs. Moreover, it had high sensitivity and was hopeful to be made into a miniature instrument. Thus, the electrochemical immuno-sensor based on ketamine hydrochloride plays an important role in the detection of illicit drugs on the competition site of sports events.

Keywords: 

ketamine hydrochloride, electrochemical immuno-sensor, sports illicit drugs; morphine, sensitivity

1. Introduction
2. Detection of KTHC Using the Immuno-Sensor
3. Detection of Sports Illicit Drug Morphine Using Immuno-Sensors
4. Discussion
  References

[1] Gangopadhyay D, Allstot EG, Dixon AM R, et al., IEEE J. Solid-St. Circ., 49, 426 (2014).

[2] Ernst L, Goodger JQD, Alvarez S, et al., J. Exp. Bot., 61, 3395 (2010).

[3] Fernández A, Eugenia M. Diseño e implementación del sistema de instrumentación y control de la planta de tratamiento de agua cruda, unidad X-1602, en CPF de Palo Azul, bloque 18. Cadernos De Saúde Pública, 2015, 31:621-632.

[4] Breimaier HE, Halfens RJ, Lohrmann C., Bmc. Nurs., 14, 1 (2015).

[5] Chen Y, Yang Y, Tu Y., Sensor Actuat B-Chem, 183, 150 (2013).

[6] Di P S, Macrì F, Bonarrigo T, et al., Am. J. Vet. Res., 77, 310 (2016).

[7] Djozan D, Ebrahimi B., Anal. Chim. Acta, 616, 152 (2008).

[8] Mccready S., Int. Trans. Oper. Res., 23, 187 (2016).

[9] Pribbenow S, Wachter B, Ludwig C, et al., Gen. Comp. Endo-crinol, 228, 40 (2016).

[10]Anitua E, Alkhraisat MH, Piñas L. et al., Ann. Anat., 199, 9 (2014).

[11]Moghaddam NB, Mousavi S M, Nasiri M, et al., Renew. Sust. Energy Rev., 15, 4200 (2011).

[12]Troy Lisa H, Galarneau MR, Dye J L. et al., New Eng. Med., 362, 110 (2010).

[13]Abdulrahman F I, Onyeyili P A, Sandabe U K, et al., J. Appl. Sci., 7, 1397 (2007).

[14]Brokjær A, Olesen A E, Christrup L L, et al., Neurogastroen-terol Motil., 27, 693 (2015).

[15]Miroslav P, Martina H, Kamil K., Sensors, 8, 5229 (2008).

[16]Centi S, Stoica A, Laschi S, et al., Electroanalysis, 22, 1881 (2010).

[17]Hou Y, Li S, Ye S, et al., Microelectron Eng., 98, 428 (2012).

[18]Ye Y, Xie H, Shao X, et al., J. Nanosci. Nanotechnol., 16, 2270 (2016).

[19]Legendre O, Bertin H, Mathias H, et al., Sensor Actuat A-Phys., 221, 115 (2015).

[20]Nishikata A, Zhu Q, Tada E, et al., Corros. Sci., 87, 80 (2014).

[21]Khan MR, Wabaidur SM, Alothman ZA, et al., Talanta, 152, 513 (2016).

[22]Yan W, Chen G, Ji C, et al., Anal. Bioanal. Chem., 1 (2016).

[23]Schellings MW, Boonen K, Schmitz EM, et al., Thromb. Res., 139, 128 (2016).