Influence of MgO on the Electrochemical Performance of Nickel Electrode in Alkaline Aqueous Electrolyte

Influence of MgO on the Electrochemical Performance of Nickel Electrode in Alkaline Aqueous Electrolyte

B. Shruthi B.J. Madhu V. Bheema Raju S. Vynatheya B. Veena Devi

Department of Chemistry, Dr. Ambedkar Institute of Technology, Bangalore - 560 056, India

Post Graduate Department of Physics, Government Science College, Chitradurga- 577 501, India

Department of Chemistry, Dayananda sagar College of Engineering, Bangalore - 560 078, India

Materials Technology Division, Central Power Research Institute, Bangalore- 560 080, India

Corresponding Author Email: 
bjmadhu@gmail.com
Page: 
131-137
|
DOI: 
https://doi.org/10.14447/jnmes.v19i3.309
Received: 
7 June 2016
| |
Accepted: 
25 July 2016
| | Citation
Abstract: 

β-nickel hydroxide (β-Ni(OH)2) was prepared using precipitation method. Magnesium oxide (MgO) was synthesized by solu-tion combustion method using magnesium nitrate as oxidizer and urea as a fuel. The effects of MgO additive on the structure and electro-chemical performance of β-Ni(OH)2 electrode are examined. The structure and property of the MgO added β-Ni(OH)2 were characterized by X-ray diffraction (XRD), thermal gravimetric-differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis. The results of the TG-DTA studies indicate that the MgO added β-Ni(OH)2 contains adsorbed water mol-ecules and anions. Partial substitution of MgO for graphite to β-nickel hydroxide is found to exhibit improvement in the electrochemical activity. Anodic peak potential (Epa) and cathodic peak potential (Epc) values are found to decrease remarkably after the incorporation of MgO into the β-Ni(OH)2 electrode. Further, addition of MgO is found to enhance the reversibility of the electrode reaction. Compared with β-Ni(OH)2 electrode, MgO substituted β-Ni(OH)2 electrode is found to exhibit higher proton diffusion coefficient. These findings suggest that the MgO substituted β-Ni(OH)2 electrode possess improved electrochemical properties such as enhanced reversibility of electrode reaction and higher proton diffusion coefficient and thus can be recognized as a promising candidate for the battery electrode applications.

Keywords: 

nickel hydroxide, MgO additive, electrode material, electrochemical properties, proton diffusion coefficient

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] Lin Li, Zhong Wu, Shuang Yuan, Xin-Bo Zhang, Energy Environ. Sci., 7, 2101 (2014).

[2] Zhong Wu, Xiao-Lei Huang, Zhong-Li Wang, Ji-Jing Xu, Heng-Guo Wang, Xin-Bo Zhang., Sci. Rep., 4, 3669 (2014).

[3] Zhong-Li Wang, Dan Xu, Ji-Jing Xu, Xin-Bo Zhang, Chem. Soc. Rev., 43, 7746 (2014).

[4] H. Bode, K. Dehmelt , J. Wittle, Electrochim. Acta, 11, 1079 (1966).

[5] S.U. Folk, A.J. Salkind, Alkaline Storage Batteries, John Wiley & Sons, New York (1969).

[6] H.S. Lim , S.A. Verzwyvelt, J. Power Sources, 62, 41 (1996).

[7] D.E. Reisner, A.J. Salkind, P.R. Strutt, T.D. Xiao, J. Power Sources, 65, 231 (1997).

[8] S. Nathira Begum, V.S. Muralidharan, C. Ahmed Basha, Int. J. Hydrogen energy, 34, 1548 (2009).

[9] T. Pan, J.M. Wang, Y.L. Zhao, H. Chen, H.M. Xiao, J.Q. Zhang, Mater. Chem. Phys., 78, 711 (2003).

[10]P. Xu, X.J. Han, B. Zhang, Z.S. Lv, X.R. Liu, J. Alloys Compd., 436, 369 (2007).

[11]M. Vidotti, R.P. Salvador, S.I.C. Torresi, Ultrason. Sonochem., 16, 35 (2009).

[12]P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas., J.J. Braconnier, M. Figlarz., J. Power Sources, 8, 229 (1982).

[13]R.D. Armstrong, G.W.D. Briggs, E.A. Charles, J. Appl. Electrochem., 18, 215 (1988).

[14]K. Watanabe, M. Koseki, N. Kumagai, J. Power Sources, 58, 23 (1996).

[15]L. Guerlou-Demourgues, C. Delmas, J. Electrochem. Soc., 143, 561 (1996).

[16]D. Yunchang, Y. Jiongliang, C. Zhaorong, J. Power Sources, 69, 47 (1997).

[17]A.K. Sood, J. Appl. Electrochem. 16, 274 (1986).

[18]C. Chakkaravarthy, P. Periasamy, S. Jegannathan, K.I. Vasu, J. Power Sources, 35, 21 (1991).

[19]D.M. Constantin, E.M. Rus, L. Oniciu, L. Ghergari, J. Power Sources, 74, 188 (1998).

[20]Li Jun, Li Rong, Wu Jianming, Su Hang, J. Power Sources, 79, 86 (1999).

[21]S. Kulcsar, J. Agh, A. Fazekas, J. Vigh, Z. Bujdoso, J. Power Sources, 8, 55 (1982).

[22]W. Xianyou, L. Hean, Y. Hongping, P.J. Sebastian, S.A. Gamboa, Int. J. Hydrogen Energy, 29, 967 (2004).

[23]Changjiu Liu, Yanwei Li, J. Alloys and Compd., 478, 415 (2009).

[24]P. Baraldi, G. Davolio, Mater. Chem. Phys., 21, 143 (1989).

[25]L. Petersen Steven, E. Tallman Dennis, Analytical Chemistry, 62, 459 (1990).

[26]W.G. Zhang, W.Q. Jiang, L.M. Yu, Z.Z. Fu, W. Xia, M.L. Yang, Int. J. Hydrogen Energy, 34, 473 (2009).

[27]B. Liu, H. Yuan, Y. Zhang, Z. Zhou, D. Song, J. Power Sources, 79, 277 (1999).

[28]B. Shruthi , V. Bheema Raju, B.J. Madhu, Spectrochimica Acta Part A, 135, 683 (2015).

[29]A. Audemer, A. Delahaye, R. Farhi, N. Sac-Epee, J. M. Tarascon, J. Electrochem. Soc., 144, 2614 (1997).

[30]Ding Yunchang, Yuan Jiong Liang, Li Hui, Chang Zhaorong, Wang Zeyun, J. Power Sources, 56(2), 201 (1995).

[31]Subramanian V, Boovaragavan V, Potukuchi K, Diwakar V, Guduru A. , Electrochem. Solid State Lett., 10(2), A25 (2007).

[32]Mustafa Aghazadeh, Ahmad Nozad Golikand, Mehdi Ghaemi, Int. J. Hydrogen energy, 36, 8674 (2011).

[33]M. Oshitani, Y. Sasaki, K. Takashima, J. Power Sources, 12, 219 (1984).

[34]P. Baraldi, G. Davolio, G. Fabbri, T. Manfredini, Mater. Chem. Phys., 21, 479 (1989).

[35]T.N. Ramesh, P.V. Kamath, Bull. Mater. Sci., 31, 169 (2008).

[36]Z.H. Liang, Y.J. Zhu, X.L. Hu, J. Phys. Chem. B, 108, 3488 (2004).

[37]W.K. Hu, X.P. Gao, D. Noreus, T. Burchardt, N. Nakstad, J. Power Sources, 160, 704 (2006).

[38]B.C. Cornilsen, P.J. Karjala, P.L. Loyselle, J. Power Sources, 22, 351 (1988).

[39]Y.L. Zhao, J.M. Wang, H. Chen, T. Pan, J.Q. Zhang, C.N. Cao, Int. J. Hydrogen Energy, 29, 889 (2004).

[40]H. Zhang, H. Liu, X. Cao, S. Li, C. Sun, Mater. Chem. Phys., 79, 37 (2003).

[41]H. Chen, J.M. Wang, T. Pan, H.M. Xiao, J.Q. Zhang, C.N. Cao, Int. J. Hydrogen Energy, 28, 119 (2003).

[42]J. Chen J, D.H. Bradhurst, S. Dou, H. Liu, J. Electrochem. Soc., 146, 3606 (1999).

[43]Q.S. Song, C.H. Chiu, S.L.I. Chan, Electrochim. Acta, 51, 6548 (2006).

[44]Q.S. Song, C.H. Chiu, S.L.I. Chan, J. Solid State Electrochem., 12, 133 (2008).

[45]A.H. Zimmerman, P.K. Effa, J. Electrochem. Soc., 131(4), 709 (1984).

[46]X. Cao, J. Wei , Y. Luo, Z. Zhou, Y. Zhang, Int. J. Hydrogen Energy, 25(7), 643 (2000).

[47]Enbo Shangguan, Zhaorong Chang, Hongwei Tang, Xiao-Zi Yuan, Haijiang Wang, Int. J. Hydrogen Energy, 35, 9716 (2010).