Improvement of Microbial Fuel Cell Performance by Selection of Anodic Materials and Enrichment of Inoculum

Improvement of Microbial Fuel Cell Performance by Selection of Anodic Materials and Enrichment of Inoculum

G. Hernández-Flores H. M. Poggi-VaraldoO. Solorza-Feria M. T. Ponce Noyola T. Romero-Castanón N. Rinderknecht-Seijas 

Environmental Biotechnology and Renewable Energies R&D Group, Dept. of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, México D.F. Código Postal 07360 Apartado Postal: 14-740, 07000 México, D.F.

Dept. of Chemistry, ibídem. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, México D.F. Código Postal 07360 Apartado Postal: 14-740, 07000 México, D.F.

Dept. Biotechnology and Bioengineering, ibídem. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, México D.F. Código Postal 07360 Apartado Postal: 14-740, 07000 México, D.F.

Electric Research Institute. Reforma 113, Col. Palmira, C.P. 62490 Cuernavaca, Morelos, México.

ESIQIE del IPN, Division of Basic Sciences. Escuela Superior de Ingeniería Química e Industrias Extractivas, ESIQIE. Edificio N° 7, Unidad Profesional Adolfo López Mateos. Colonia Lindavista, Delegación Gustavo A. Madero, México D.F., C.P. 07738

Corresponding Author Email: 
Email: r4cepe@yahoo.com
Page: 
121-129
|
DOI: 
https://doi.org/10.14447/jnmes.v18i3.357
Received: 
20 February 2015
| |
Accepted: 
21 April 2015
| | Citation
Abstract: 

This work aimed at evaluating the effect of four anodic materials and the use of enriched inocula on the microbial fuel cell (MFC) performance. The anodic materials were granular activated carbon (GAC), graphite rod (GR), triangles of graphite (GT) and graphite flakes (GF). When loaded with a sulfate-reducing inoculum (SR-In) the internal resistance (Rint) obtained were 273, 410 and 795 Ω for GF, GT, GR, respectively and higher than 10 000 Ω for GAC, whereas the maximum volumetric power (PV,max) were 1326, 2108 and 3052 mW m-3for GR, GT and GF, respectively. We observed a decrease of Rintand an increase of PV,max with the increase of the log of A´s of the graphite anodic materials that was consistent with a mathematical model previously reported by our Group. The use of the Fe (III)-reducing inoculum significantly enhanced the MFC performance; PV,max was up to 5000 mW m-3, 40% higher than the power obtained with SR-In whereas the Rint was 140 ohms. Highest PVs of our MFC were close to values of electricity power derived from the anaerobic digestion of municipal wastewaters. In this regard, results of this work point out to a promising approach to further tapping bioelectricity from organic wastes that previously have yielded biohydrogen.

Keywords: 

microbial fuel cells; anodic materials; volumetric power; enriched inoculum

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusion
Acknowledgements

The authors gratefully acknowledge the insightful comments and criticisms of the anonymous Referees and the Editor-in-Chief Dr. Ouomarou Savadogo that undoubtedly allowed for a significant improvement of our manuscript. The authors also wish to thank CINVESTAV-IPN and ICTYDF of the GDF (now SECITI), Mexi-co, for financial support to this research (PICCO-10-28). Giovanni Hernández-Flores received a graduate scholarship from CONA-CYT, Mexico. CONACYT also granted an Infrastructure Project 188281 to HMP-V. Finally, the authors thank Mr. Rafael Hernán-dez-Vera and technicians of the Environmental of Biotechnology and Renewable Energy R&D Group, CINVESTAV-IPN for their excellent technical help.

  References

[1] D. Das, T. N. Veziroglu, Int J. Hydrogen Energy, 26, 13 (2001).

[2] Y. Cheng-Dar, L. Chung-Ming, E. M. L. Liou, Energy Policy, 29, 951 (2001).

[3] I. Valdez-Vázquez, E. Ríos-Leal, F. J. Esparza-García, F. Cec-chi, H. M. Poggi-Varaldo, Int. J. Hydrogen Energy, 30, 1383 (2005).

[4] I. Valdez-Vazquez, E. Rios-Leal, A. Carmona-Martinez, K. Muñoz-Páez, H. M. Poggi-Varaldo, Environ. Sci. Technol., 40, 3409 (2006).

[5] H. M. Poggi-Varaldo, A. Carmona-Martínez, A. L. Vázquez-Larios, O. Solorza-Feria, J. New Mat. Electrochem. Systems, 12, 49 (2009).

[6] A. L. Vazquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, F. J. Esparza-Garcia, E. Rios-Leal, N. Rinderknecht-Seijas, H. M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 13, 219 (2010).

[7] H. M. Poggi-Varaldo, K. M. Munoz-Paez, C. Escamilla-Alvarado, P. N. Robledo-Narváez, M.T. Ponce-Noyola, G. Calva-Calva, E. Ríos-Leal, J. Galíndez-Mayer, C. Estrada-Vázquez, A. Ortega-Clemente, N. Rinderknecht-Seijas, Waste Management Research, 32, 353 (2014).

[8] Z. Du, H. Li, T. Gu, Biotechnol. Adv., 25, 464 (2007).

[9] O. Lefebvre, A. Al-Mamun, W. K. Ooi, Z. Tang, D. H. C. Chua, H. Y. Ng, Water Sci. Technol., 57, 2031 (2008).

[10]S. Ouitrakul, M. Sriyudthsak, S. Charojrochkul, T. Kakizono, Biosens. Bioelectron., 23, 721 (2007).

[11]P. Belleville, P. J. Strong, P. H. Dare, D. J. Gapes, Water Sci. Technol., 63, 1752 (2011).

[12]B. E. Logan, J. M. Regan, Environ. Sci. Technol., 5172 (2006).

[13]Y. Yang, G. Sun, M. Xu, J. Chem. Technol. Biotechnol., 86, 625 (2010).

[14]M. Zhou, M. Chi, J. Luo, H. He, T. Jin, J. Power Sources, 196, 4427 (2011).

[15]B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

[16]S. Sevda, X. Dominguez-Benetton, K. Vanbroekhoven, T. R. Sreekrishnan, D. Pant, Chem Eng J. 228, 1 (2013).

[17]A. ElMekawy, S. Srikanth, K. Vanbroekhoven, H. De Wever, D. Pant, Journal of Power Sources. 262, 183 (2014).

[18]H. Rismani-Yazdi, S. M. Carver, A. D. Christy, O. H. Tuovinen, J. Power Sources, 180, 683 (2008).

[19]D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics. 7th ed. John Wiley & Sons, Inc. New York, 2005.

[20]D. Jiang, B. Li, Wat. Sci. Technol., 59.3, 557 (2009).

[21]B. E. Logan, Water Sci. Technol., 52, 31 (2005).

[22]H. M. Poggi-Varaldo, A. Vazquez-Larios, O. Solorza-Feria, Microbial fuel cells. In Rodríguez-Varela F. J., Solorza-Feria O., Hernández-Pacheco, E. (Eds). Fuel cells. Book Livres, Montréal, Canada, 2010.

[23]F. Li, Y. Sharma, Y. Lei, B. Li, Q. Zhou, Appl. Biochem. Biotechnol., 160, 168 (2011).

[24]C. I. Torres, A. K. Marcus, H. S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B. E. Rittmann, Bioresour. Technol., 102, 9335 (2010).

[25]K. Rabaey, G. Lissens, D. S. Steven, W. Verstraete, Biotech-nol. Lett., 25, 1531 (2003).

[26]H. Liu, B. E. Logan, Environ. Sci. Technol., 38, 4040 (2004).

[27]B. Min, S. Cheng, B. E. Logan, Water Res., 39, 1675 (2005).

[28]H. Liu, S. Cheng, B. E. Logan, Environ. Sci. Technol., 39, 5488 (2005).

[29]S. Cheng, H. Liu, B. E. Logan, Environ. Sci. Technol., 40, 2426 (2006).

[30]B. E. Logan, Microbial fuel cells. John Wiley-Interscience. New Jersey, USA, 2007.

[31]D. Jiang, B. Li, Biochem. Eng. J., 47, 31 (2009).

[32]J. Wei, P. Liang, X. Huang, Bioresour. Technol., 102, 9335 (2011).

[33]S. Hays, F. Zhang, B. E. Logan, J. Power Sources, 195, 8293 (2011).

[34]Y. Feng, Q. Yang, X. Wang, B. E. Logan, J. Power Sources, 195, 1841 (2010).

[35]A. Larrosa-Guerrero, K. Scott, K. P. Katuri, C. Godinez, I. M. Head, T. Curtis, Appl. Microbiol. Biotechnol., 87, 1699 (2010).

[36]Y. Liu, F. Harnisch, K. Fricke, U. Schröder, V. Climent, J. M. Feliu, Biosens. Bioelectron., 25, 2167 (2010).

[37]T. Jin, L. Zhou, J. Luo, J. Yang, Y. Zhao, M. Zhou, J. Chem. Technol. Biotechnol., 88, 2075 (2013).

[38]L. Hsu, B. Chadwick, J. Kagan, R. Thacher, A. Wotawa-Bergen, K. Richter, RSC Adv., 3, 15947 (2013).

[39]A. Dewan, H. Beyenal, Z. Lewandowski, Environ. Sci. Tech-nol., 42, 7643 (2008).

[40]A. L. Vazquez-Larios, O. Solorza-Feria, J. Barrera Cortes, E. Ríos-Leal, M. T. Ponce-Noyola, F. Esparza-García, R. G. Gon-zález-Huerta, N. Rinderknecht-Seijas, H. M. Poggi-Varaldo, Proceedings “Battelle 9th International Conference on Remedi-ation of Chlorinated and Recalcitrant Compounds”, Monterey, CA, USA, May 19-22, 2014.

[41]K. Juarez, B. C. Kim, K. Nevin, L. Olvera, G. Reguera, D. R. Lovley, B. A. Methe, J. Mol. Microbiol. Biotechnol., 16, 146 (2009).

[42]M. Sharma, N. Aryal, P. M. Sarma, K. Vanbroekhoven, B. Lal, X. Dominguez Benetton, D. Pant, Chemical Communications. 49, 6495 (2013).

[43]A. ElMekawy, H. M. Hegab, K. Vanbroekhoven, D. Pant, Re-newable and Sustainable Energy Reviews. 39, 617 (2014).

[44]D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 51, 683 (1986).

[45]D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 53, 1536 (1987).

[46]D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 54, 1472 (1988).

[47]A. C. Ortega-Martínez, K. Juárez-López, O. Solorza-Feria, M. T. Ponce-Noyola, J. Galindez-Mayer, N. Rinderknecht-Seijas, H. M. Poggi-Varaldo, Int. J. Hydrogen Energy, 38, 12589 (2013).

[48]K. Sathish-Kumar, O. Solorza-Feria, J. Tapia-Ramírez, N. Rinderkenecht-Seijas, H. M. Poggi-Varaldo, Int. J. Hydrogen Energy, 38, 12600 (2013).

[49]D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, Biore-sour. Technol., 101, 1533 (2010).

[50]A. L. Vázquez-Larios, O. Solorza-Feria, G. Vázquez-Huerta, F. Esparza-García, N. Rinderknecht-Seijas, H. M. Poggi-Varaldo, Int. J. Hydrogen Energy, 36, 6199 (2011).

[51]J. N. Zhang, Q. L. Zhao, S. J. You, J. Q. Jiang, N. Q. Ren, Wa-ter Sci. Technol., 57 (7), 1017 (2008).

[52]J. Greenman, A. Gálvez, L. Giusti, I. Ieropoulos, Enzyme Mi-crob. Technol., 44, 112 (2009).

[53]A. Galvez, J. Greenman, I. Ieropoulos, Bioresour. Technol., 100, 5085 (2009).

[54]G. Hernández-Flores, H.M. Poggi-Varaldo, O. Solorza-Feria O, T. Romero-Castañón, E. Ríos-Leal, J. Galíndez-Mayer, F. Esparza-García, International Journal of Hydrogen Energy (2015), In press.

[55]G. Hernández-Flores, Interim Report. Sc D Thesis, CINVES-TAV-IPN, México, D.F., 2013.

[56]G. Hernández-Flores, H.M. Poggi-Varaldo, O. Solorza-Feria O, M. T. Ponce Noyola, T. Romero-Castañón, N. Rinderknecht-Seijas, International Journal of Hydrogen Energy (2015). In press.

[57]H. M. Poggi-Varaldo, L.Valdés, F. J. Esparza-García, G. Fer-nández-Villagómez, Water Sci. Technol., 35, 197 (1997).

[58]H. M. Poggi-Varaldo, N. Rinderknecht-Seijas, Acta Biotechno-logica, 23, 271 (2003).

[59]H. M. Poggi-Varaldo, L. M. Alzate-Gaviria, A. Perez-Hernandez, V. G. Nevarez-Morillon, N. Rinderknecht-Seijas, Waste Manage. Res., 23, 270 (2005).

[60]APHA. Standard methods for examination of water and wastewater. 17th ed. APHA-AWWA-WEF, Washington DC, 1989.

[61]V. J. Watson, B. E. Logan, Electrochem. Commun., 13, 54 (2011).

[62]Y. Alvarez-Gallego, X. Dominguez-Benetton, D. Pant, L. Diels, K. Vanbroekhoven, I. Genné, P. Vermeiren, Electrochi-mica Acta. 82, 415 (2012).

[63]X. Zhang, D. Pant, F. Zhang, J. Liu, W. He, B. E. Logan, ChemElectroChem. 1, 1859 (2014).

[64]D. Montgomery, Design and analysis of experiments. 3rd ed John Wiley & Sons, New York, 1991.

[65]A. Wang, D. Sun, N. Ren, Ch. Liu, W. Liu, B. E. Logan, W. Wei-Min, Bioresour. Technol., 101, 5733 (2010).

[66]L. Aino-Maija, O. H. Tuovinen, J. A. Puhakka, Bioenergy Res., 5, 481 (2012).

[67]S. Ishii, S. Suzuki, T. M. Norden-Krichmar, K. H. Nealson, Y. Sekiguchi, Y. A. Gorby, O. Bretschger, PLoS ONE 7(2): e30495. doi:10.1371/journal.pone.0030495, 2012.

[68]G. Zhang, Q. Zhao, Y. Jiao, K. Wang, L. Duu-Jong, N. Ren, Water Res., 46, 43 (2012).

[69]C. Garibay-Orijel, E. Rios-Leal, J. Garcia-Mena, H. M. Poggi-Varaldo, J. Chem. Technol. Biotechnol., 80, 1180 (2005).

[70]J. Galíndez-Mayer, J. Ramón-Gallegos, N. Ruiz-Ordaz, C. Juárez-Ramírez, A. Salmerón-Alcocer, H. M. Poggi-Varaldo, Biochem. Eng. J., 38, 147 (2008).

[71]Y. A. Çengel, M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed, McGraw-Hill, 2006.

[72]H. M. Poggi-Varaldo, G. Hernandez-Flores, Estimation of energy thresholds in microbial fuel cells and other commercial bioenergy processes. Internal Report, CINVESTAV del IPN, Mexico, 2013.

[73]H. M. Poggi-Varaldo, L. M. Alzate-Gaviria, A. Perez-Hernandez, V. G. Nevarez-Morillon, N. Rinderknecht-Seijas, Waste Manage. Res., 23, 270 (2005).

[74]C. D. De Bazua, M. A. Cabrero, H. M. Poggi-Varaldo, Biore-sour. Technol., 35, 87 (1991).

[75]H. M. Poggi-Varaldo, L.Valdés, F. J. Esparza-García, G. Fer-nández-Villagómez, Water Sci. Technol., 35, 197 (1997).

[76]P. Aelterman, K. Rabaey, T. H. Pham, N. Boon, W. Verstraete, Environ. Sci. Technol., 40, 3388 (2006).

[77]T. H. Pham, K. Rabaey, P. Aelterman, P. Clauwaert, L. De Schamphelaire, N. Boon, W. Verstraete, Eng. Life Sci., 6, 285(2006).

[78]D. Stolten, B. Emonts. Fuel cell science and engineering: mate-rials, processes, systems and technology, 1st ed., Wiley-VCH Verlag GmbH & Co. KGaA, 2012.

[79]http://app.cfe.gob.mx/Aplicaciones/CCFE/Tarifas/Tarifas/Tarifas_casa.asp?Tarifa= DACTAR1&anio=2013.

[80]I. Valdez-Vazquez, H. M. Poggi-Varaldo, International Journal of Hydrogen Energy, 34, 3639 (2009).

[81]J. Galíndez-Mayer, J. Ramón-Gallegos, N. Ruiz-Ordaz, C. Juárez-Ramírez, A. Salmerón-Alcocer, H.M. Poggi-Varaldo, Biochemical Engineering Journal, 8, 147 (2008).

[82]J. F. Buenronstro-Zagal, A. Ramirez-Oliva, S. Caffarel-Mendez, B. Schettino-Bermudez, H. M. Poggi-Varaldo, Water Science and Technology, 42, 185 (2000).