Material, Electrical and Optical Analyses of Electrodeposited Electrochromatic NiO Film with Heat Treatment

Material, Electrical and Optical Analyses of Electrodeposited Electrochromatic NiO Film with Heat Treatment

Hsiang Chen Chia-Hung Chen Hua-Yu Shih Jun Yu Lin Yih-Min Yeh 

Department of Applied Material and Optoelectronic Engineering, National Chi Nan University, 54561, Puli, Taiwan, R.O.C.

Graduate School of Opto-Mechatronics and Materials, WuFeng University, No.1, University Rd, Puli, Nantou County, 54561 Taiwan, R.O.C.

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
75-78
|
DOI: 
https://doi.org/10.14447/jnmes.v18i2.371
Received: 
27 March 2014
| |
Accepted: 
28 May 2015
| | Citation

OPEN ACCESS

Abstract: 

In this study, we propose two-step method of electrochemical deposition and heat treatment to fabricate electrochromic NiO films. A precursor NiO film was electro-deposited on fluorine-doped tin oxide (FTO). Then, the deposited film was crystallized with heat treatment. X-ray diffraction (XRD) was used to examine the crystalline structure and scanning electron microscope (SEM) was used to analyze the surface morphologyfor the film in different deposition and heat treatment conditions. Moreover, the cyclic voltammetry (CV) and optical performance of the film was evaluated. Based on multiple material and optical analysis, the film grown with plating solution with a pH value of 8.0 treated by heat treatment at 500ºC was the most desirable electro chromatic film. The fabricated NiO electrochromic film shows promise for use in future device applications.

Keywords: 

NiO, electrodepostion, electrochromatic device, cyclic voltammetry, heat treatment

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] Julia Khalack, P.V. Ashrit, Appl. Phys. Lett. 89, 211112 (2006).

[2] Y.F. Yuan, X.H. Xia, J.B. Wu, Y.B. Chen, J.L. Yang, S.Y. Guo, Electrochimica Acta, 56, 1208 (2011).

[3] H. Elzanowska, E. Miasek, V.I. Birss, Electrochim. Acta, 53, 2706 (2008).

[4] Y. Zhou, D.H. Gu, Y.Y. Geng, F.X. Gan, Mater. Sci. Eng. B, 135, 125 (2006).

[5] T. Maruyama, S. Arai, Sol. Energy Mater. Sol. Cells, 30, 257 (1993).

[6] S.Y. Han, D.H. Lee, Y.J. Chang, S.O. Ryu, T.J. Lee, C.H. Chang, J. Electrochem. Soc., 153, 382 (2006).

[7] A. Sonavane, A. Inamdar, P. Shinde, H. Deshmukh, R. Patil, and P. Patil, Journal of Alloys and Compounds, 489, 667 (2010).

[8] E. Avendano, L. Berggren, G. Niklasson, C. Granqvist and A. Azens, Thin Solid Films, 496, 30 (2006).

[9] G.F. Cai, C.D. Gu, J. Zhang, P.C. Liua, X.L. Wang, Y.H. You, J.P. Tu, Electrochimica Acta, 87, 341 (2013).

[10] H. Moulki, C. Faure, M.Mihelčič, A. Šurca Vuk, F. Švegl, B. Orel, G. Campet, M. Alfredsson, A.V. Chadwick, D. Gianolio, A. Rougier, Thin Solid Films, 553, 63 (2014).

[11] K. Zhang, X.Q. Zhang, C.X. Zhang, S.J. Zhang, X.C. Wang, D.L. Sun, M.A. Aegerter, Solar Energy Materials & Solar Cells, 114, 192 (2013).

[12] X. Xia, J. Tu, J. Zhang, X. Wang, W. Zhang, and H. Huang, Electrochimica Acta, 53, 5721 (2008).

[13] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Solar Energy Materials & Solar Cells, 92, 628 (2008).

[14] A.A. Kulkarni, S.S. Tupe, A.V. Kadam, Future of Electron Devices, Kansai (IMFEDK), IEEE International Meeting, 1 (2012).

[15] Jin-Young Park, Kwang-Soon Ahn, Yoon-Chae Nah, Hee-Sang Shim, Yung-Eun Sung, Journal of Sol-Gel Science and Technology, 31, 323 (2004).

[16] A.A. Kulkarni, S.S. Tupe, A.V. Kadam, International Journal of Latest Trends in Engineering and Technology, 2, 258 (2013).