Polyvinyl Alcohol (PVA)-assisted Synthesis of BiFeO3 Nanoparticles for Photocatalytic Applications

Polyvinyl Alcohol (PVA)-assisted Synthesis of BiFeO3 Nanoparticles for Photocatalytic Applications

Feng Niu Tong Gao Laishun Qin Zhi Chen Qiaoli Huang Ning Zhang Sen Wang Xingguo Sun Yuexiang Huang

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, P.R. China

Corresponding Author Email: 
yuexiang65@hotmail.com
Page: 
69-73
|
DOI: 
https://doi.org/10.14447/jnmes.v18i2.370
Received: 
13 January 2015
| |
Accepted: 
20 March 2015
| | Citation

OPEN ACCESS

Abstract: 

Bismuth ferrite (BiFeO3) is a promising material for visible light response photocatalytic applications. In the present work, BiFeO3 particles were synthesized by a polyvinyl alcohol (PVA)-assisted solid state reaction processing. The XRD pattern result indicated that the as-prepared particles are pure BiFeO3crystalline phase. The microscopy observation demonstrated that the BiFeO3 particle size is from 100 to 200 nm, which is smaller than that of the BiFeOprepared without addition of PVA. The HRTEM showed that BiFeO3 particle is polycrystalline and contains many small crystal grains with different orientations. Furthermore, such nanosized and well-dispersed BiFeO3 particles exhibited a much higher photocatalytic activity than the prepared BiFeOwithout addition of PVA for the photodegradation of methyl orange contaminant under visible light irradiation.

Keywords: 

bismuth ferrite, polyvinyl alcohol, solid state synthesis, microstructure, photoelectrochemistry

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

This work is financially supported by the National Natural Sci-ence Foundation of China (No. 51372237), International S&T Co-operation Program of China (No. 2013DFG52490), Public Welfare Project of Science & Technology Department of Zhejiang Province (No. 2014C31026) and Zhejiang Provincial Higher School Talent Project (No. PD2013183).

  References

[1] G Catalan, J. F. Scott, Adv. Mater., 21, 2463 (2009).

[2] F Gao, X. Y. Chen, K. B. Yin, S Dong, Z. F. Ren, F Yuan, T Yu, Z. G. Zou, J. M. Liu, Adv. Mater., 19, 2889 (2007).

[3] C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, Mater. Express, 2, 319 (2012).

[4] T Gao, Z Chen, Y. X. Zhu, F Niu, Q. L. Huang, L. S. Qin, X. G. Sun, Y. X. Huang, Mater. Res. Bull., 59, 6 (2014).

[5] W. M. Tong, L. P. Li, W. B. Hu, T. J. Yan, G. S. Li, J. Phys. Chem. C, 114, 1512 (2010).

[6] M. Yasin Shamia, M. S. Awan, M Anis-ur-Rehman, J. Alloy. Compd., 509, 10139 (2011).

[7] Y. Q. Zheng, G. Q. Tang, H. Y. Miao, A Xia, H. J. Ren, Mater. Lett., 65, 1137 (2011).

[8] N. Das, R. Majumdar, A. Sen, H. S. Maiti, Mater. Lett., 61, 2100 (2007).

[9] X. L. Chen, Y Tang, L Fang, H Zhang, C. Z. Hu, H. F. Zhou, J. Mater. Sci: Mater. Electron., 23, 1500 (2012).

[10] G. Q. Tan, Y. Q. Zheng, H. Y. Miao, A Xia, H. J. Ren, J. Am. Ceram. Soc., 95, 280 (2012).

[11] C Reitz, C Suchomski, C Weidmann, T Brezesinski, Nano Res., 4, 414 (2011).

[12] C. J. Tsai, C. Y. Yang, Y. C. Liao, Y. L. Chueh, J. Mater. Chem., 22, 17432 (2012).

[13] A. Chaudhuri, S. Mitra, M. Mandal, K. Mandal, J. Alloy. Compd., 491, 703 (2010).

[14] H Ke, W Wang, Y. B. Wang, J. H. Xu, D. C. Jia, Z Lu, Y Zhou, J. Alloy. Compd., 509, 2192 (2011).

[15] P. Kubelka, F. Munk, Tech. Z. Phys., 12, 593 (1931).