Composite Supercapacitor Electrodes by Electrodeposition of MnO2 on MWCNT Felt Directly Grown on Aluminum

Composite Supercapacitor Electrodes by Electrodeposition of MnO2 on MWCNT Felt Directly Grown on Aluminum

Reza Kavian Antonello VicenzoMassimiliano Bestetti 

Politecnico di Milano - Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta” - Via Mancinelli 7, 20131 Milano, Italy

Corresponding Author Email: 
antonello.vicenzo@polimi.it
Page: 
43-48
|
DOI: 
https://doi.org/10.14447/jnmes.v18i1.388
Received: 
20 September 2014
| |
Accepted: 
23 December 2014
| | Citation

OPEN ACCESS

Abstract: 

Manganese oxide \ carbon nanotube (CNT) thin film electrodes were fabricated by direct growth of a carbon nanotube layer on aluminum substrate (i.e. a commercially viable material for use as current collector) by chemical vapor deposition, in the presence of an electrochemically deposited thin film nickel catalyst, followed by anodic electrodeposition of MnO2. A proof of concept of this approach is demonstrated showing that the fabrication process, even in its simplest and unsophisticated implementation –notably without any deliberate effort to control the CNT growth arrangement and consequently the composite microstructure– allows the preparation of MnO2/CNT/Al prototype electrodes having almost a three-fold increase in capacitance compared to MnO2/Ni electrodes and, more significantly, comparing favorably with composite electrodes of similar design and fabrication. MnO2/CNT/Al electrodes ensured also improved cyclic stability compared to the reference case of MnO2/Ni electrodes. The proposed scheme is an effective procedure for the fabrication of thin film composite MnO2/CNT/Al electrodes, which may be amenable to significant improvements by tailoring thickness and microstructure of the CNT scaffold and manganese oxide film. Furthermore, a similar process scheme, may be proposed for the fabrication of active electrodes of different scopes with a proper choice of the substrate.

Keywords: 

manganese oxide, carbon nanotubes, direct growth, composite electrode film, metal substrate

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] Conway BE., Electrochemical Supercapacitors - Scientific Fundamentals and Technological Applications Plenum Press, New York, 1999.

[2] E. Frackowiak, F. Beguin, Carbon, 39, 937 (2001).

[3] S. Ghosh, O. Inganas, Adv. Mater., 11, 1214 (1999).

[4] Y. Zhang, H Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Int. J. Hydrogen Energy, 34, 4889 (2009).

[5] M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, Nanoscale, 5, 72 (2013).

[6] J.P. Zheng, Electrochem. Solid-State Lett., 2, 359 (1999).

[7] H.Y. Lee, J.B. Goodenough, J. Solid State Chem., 144, 220 (1999).

[8] C.C. Hu, T.W. Tsou, Electrochem. Commun., 4, 105 (2002).

[9] M. Toupin, T. Brousse, D. Belanger, Chem. Mater., 14, 3946 (2002).

[10] M. Toupin, T. Brousse, D. Belanger, Chem. Mater., 16, 3184 (2004).

[11] R.N Reddy, R.G. Reddy, J. Power Sources, 124, 330 (2003).

[12] W. Wei, X. Cui, W. Chen and D.G. Ivey, Chem. Soc. Rev., 40, 1697 (2011).

[13] S.C. Pang, M.A. Anderson, T.W. Chapman, J. Electrochem. Soc., 147, 444 (2000).

[14] S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.-K. Liu, S.-X. Dou, Electrochem. Commun., 10, 1724 (2008).

[15] D.B. Rogers, R.D. Shannon, A.W. Sleight and J.L. Gillson, Inorg. Chem., 8, 841 (1969).

[16] D. Tench, L.F. Warren, J. Electrochem. Soc., 130, 869 (1983).

[17] C.-C. Hu, C.-C. Wang, J. Electrochem. Soc., 150, A1079 (2003).

[18] G.J. Moore, R. Portal, A.L.G. La Salle, D. Guyomard, J. Power Sources, 97, 393 (2001).

[19] C.-C. Hu, T.W. Tsou, Electrochim. Acta., 47, 3523 (2002).

[20] M.S. Wu, Appl. Phys. Lett., 87, 153102 (2005).

[21] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi and Z. Gu, Nano Lett., 8, 264 (2008).

[22] Y. Wang, H. Liu, X. Sun and I. Zhitomirsky, Scr. Mater., 61, 1079 (2009).

[23] H. Xia, Y. Wang, J. Lin and L. Lu, Nanoscale Res. Lett., 7, 33 (2012).

[24] R. Amade, E. Jover, B. Caglar, T. Mutlu, E. Bertran, J. Power Sources, 196, 5779 (2011).

[25] N.S.A. Manaf, M.S.A. Bistamam and M.A. Azam, ECS J. Solid State Sci. Technol., 2, M3101 (2013).

[26] R. Kavian, A. Vicenzo, M. Bestetti, J. Mater. Sci., 46, 1487 (2011).

[27] R. Reit, J. Nguyen, W.J. Ready, Electrochim. Acta, 91, 96 (2013).

[28] S. Dörfler, I. Felhösi, T. Marek, S. Thieme, H. Althues, L. Nyikos, S. Kaskel, J. Power Sources, 227, 218 (2013).

[29] F. Zhao, A. Vicenzo, M. Hashempour, M. Bestetti, Electrochim. Acta, 150, 35 (2014).

[30] M. Hashempour, A. Vicenzo, F. Zhao and M. Bestetti, Mater. Charact., 92, 64 (2014).

[31] G. Mo, Y. Zhang, W. Zhang, J. Ye, Electrochim. Acta, 113, 373 (2013).

[32] D.-D. Zhao, Z. Yang, E.S.-W. Kong, C.-L. Xu, Y.-F. Zhang, J. Solid State Electrochem., 15, 1235 (2011).

[33] J. Liu, J. Essner and J. Li, Chem. Mater. 22, 5022 (2010).

[34] P. Lv, P. Zhang, Y. Feng, Y. Li, W. Feng, Electrochim. Acta, 78, 515 (2012).

[35] T. Shinomiya, V. Gupta, N. Miura, Electrochim. Acta, 51, 4412 (2006).

[36] M.P. Owen, G.A. Lawrance, S.W. Donne, Electrochim. Acta, 52, 4630 (2007).

[37] Y.-C. Chen, Y.-K. Hsu, Y-G. Lin, Y.-K. Lin, Y.-Y. Horn, L.-C. Chen, K.-H. Chen, Electrochim. Acta, 56, 7124 (2011).

[38] R. Amade, E. Jover, B. Caglar, T. Mutlu, E. Bertran, J. Power Sources, 196, 5779 (2011).

[39] D. Bélanger, T. Brousse and J.W. Long, Electrochem. Soc. Interface, 17, 34 (2008).