Electrochemical Properties of Nanostructured AgxPt100-x/C Electrocatalyst for Oxygen Reduction Reaction

Electrochemical Properties of Nanostructured AgxPt100-x/C Electrocatalyst for Oxygen Reduction Reaction

Andrés Godínez-GarcíaAlejandra García-García H. Vladimir Martínez-Tejada J.F. Pérez-Robles O. Solorza-Feria 

Depto. Materiales, CINVESTAV-IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, C.P. 76230 Querétaro, Qro

Centro de Investigación en Materiales Avanzados S.C. Unidad Monterrey, Alianza Norte #202 Km10 de la Autopista Monterrey-Aeropuerto. C.P. 66600, Apodaca, Nuevo León

Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín, Antioquia, C.P. 050031

Depto. Química, CINVESTAV-IPN, Av. IPN 2508 A.P. 14-740, 07360 México, D.F., México

University of Texas at San Antonio, Dpt. Physics and Astronomy, One UTSA circle, 78249. San Antonio, TX

Corresponding Author Email: 
agodinez@qro.cinvestav.mx
Page: 
129-135
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.56
Received: 
10 December 2011
| |
Accepted: 
10 February 2012
| | Citation
Abstract: 

In this work, AgxPt100-x/C (x = 60, 80, 90 and 95) colloidal nanostructured electrocatalysts for the oxygen reduction reaction (ORR) were prepared by sequential reduction of AgNO3 and H2PtCl6 using an ultrasound-assisted colloidal method. The synthesized materials were characterized by UV/Vis spectroscopy, XRD, EDS and HRTEM. In addition electrochemical measurements were performed using cyclic voltammetry (CV) and thin-film rotating-disk electrode (TF-RDE) technique in 0.5 M H2SO4 at room temperature. Results of the physical characterization showed ring-like morphology of the nanostructured catalyst with a size distribution in the range of 6-16 nm. From steady polarization measurements, the AgxPt100-x/C nanocatalysts showed electrocatalytic activity towards the ORR like that obtained for Pt/C catalyst under the same experimental conditions and also favored the multielectron (n=4e-) charge transfer process to water formation (i.e., O2+4H++4e- → 2H2O).

Keywords: 

nanoparticles, sonochemistry, electrochemical properties, ORR, PEMFC

1. Introduction
2. Expertmental Procedure
3. Results and Discussion
4. Conclusions
Acknowledgements

This work was partially supported by the National Science and Technology Council of Mexico (CONACYT, project 83247). Special thanks are due to Professor Miguel J. Yacaman, from the International Center for Nanotechnology and Advanced Materials (ICNAM), at the University of Texas - San Antonio, U.S.A., for assistance with HRTEM observations and to Luzma Avilés-Arellano for her technical support.

  References

[1] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Energ Policy, 36, 4356 (2008).

[2] P. Corbo, F. Migliardini, O. Veneri, J Power Sources, 195, 7849 (2010).

[3] J. Brouwer, Curr Appl Phys., 10, S9 (2010).

[4] T. Okada, E. Yoo, T. Kahara, C. Ono, J. Nakamura, Electrochem Solid St., 11, B96 (2008).

[5] T. Ohsaka, M.R. Miah, J. Masud, Electrochim Acta, 56, 285 (2010).

[6] M.R. Miah, M.T. Alam, T. Okajima, T. Ohsaka, J. Electrochem Soc., 156, B1142 (2009).

[7] X.S. Zhang, J.S. Zheng, P. Li, J. Zhu, X.G. Zhou, W.K. Yuan, Electrochem Commun., 9, 895 (2007).

[8] K. Epping Martin, P. Kopasz John, W. McMurphy Kevin, Status of Fuel Cells and the Challenges Facing Fuel Cell Technology Today, in: Fuel Cell Chemistry and Operation, American Chemical Society, 2010, pp. 1-13.

[9] R.R. Adzic, K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, Angew Chem. Int. Edit., 49,8602 (2010).

[10]Y. Sun, B. Mayers, Y. Xia, Advanced Materials, 15, 641 (2003).

[11]D. Zhao, Y.-H. Wang, B. Yan, B.-Q. Xu, J. Phys. Chem. C, 113, 1242 (2009).

[12]L. Chen, W. Zhao, W. Jiao, X. He, J. Wang, Y. Zhang, Spectrochim. Acta A, 68, 484 (2007).

[13]P.V. Kamat, Z.S. Pillai, J. Phys. Chem. B, 108, 945 (2004).

[14]B.Q. Xu, D. Zhao, Y.H. Wang, B. Yan, J. Phys. Chem. C, 113, 1242 (2009).

[15]B.G. Ershov, Russ Chem B+, 50, 626 (2001).

[16]E. Antolini, Appl. Catal. B-Environ, 88, 1 (2009).

[17]A. Gedanken, Ultrason Sonochem., 11, 47 (2004).

[18]M. Mavrikakis, S. Alayoglu, A.U. Nilekar, B. Eichhorn, Nat. Mater., 7, 333 (2008).

[19]B. Eichhorn, S. Alayoglu, P. Zavalij, Q. Wang, A.I. Frenkel, P. Chupas, Acs. Nano, 3, 3127 (2009).

[20]O. Solorza-Feria, G. Ramos-Sanchez, Int. J. Hydrogen Energy, 35, 12105 (2010).

[21]C. Contanceu, P. Crouigneau, J.P. Léager, C. Lamy, J. Electro-anal. Chem., 379, 389 (1994).

[22]R.G. Gonzalez-Huerta, A.R. Pierna, O. Solorza-Feria, J. New Mat. Electrochem. Systems, 11, 63 (2008).

[23]U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Elec-troanal. Chem., 495, 134 (2001).

[24]U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, S.V.R. V, N.M. Markovic, P.N. Ross, J. Phys. Chem. B, 106, 4181 (2002).