Development of Inorganic-organic Membranes Consisting of ZrO2·nH2O and Sulfonated-PES for Direct Methanol Fuel Cells

Development of Inorganic-organic Membranes Consisting of ZrO2·nH2O and Sulfonated-PES for Direct Methanol Fuel Cells

Takayuki Hirashige Tomoichi Kamo Takao Ishikawa Takeyuki Itabashi 

Central Research Laboratory, Hitachi Ltd., Akanuma 2520, Hatoyama-machi, Hiki-gun, Saitama, 350-0395

Page: 
83-88
|
DOI: 
https://doi.org/10.14447/jnmes.v15i2.75
Received: 
8 November 2011
| |
Accepted: 
8 December 2011
| | Citation
Abstract: 

We investigated inorganic-organic membranes consisting of sulfonated-poly(ether sulfone) (S-PES) and ZrO2·nH2O with the aim of improving proton conductivity and blocking methanol. We prepared excellent uniform membranes by the method using ZrOCl28H2O as a precursor. The proton conductivity of the ZrO2·nH2O/S-PES (EW=850) composite membrane with 50wt% ZrO2·nH2O content was about four times higher than that of S-PES (EW=850). On the other hand, the methanol permeability of the ZrO2·nH2O/S-PES (EW=850) composite membrane with 50wt% ZrO2·nH2O content was almost the same as that of S-PES (EW=850). These results mean in the composite membranes, the trade-off relationship between proton conductivity and methanol permeability found in S-PES was improved. The initial I-V performance of an MEA consisting of the ZrO2·nH2O/S-PES (EW=850) composite membrane with 50wt% ZrO2·nH2O content showed a maximum power density of 65 mW cm-2 at 260 mA cm-2.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

We have prepared inorganic-organic membranes consisting of SPES and ZrO2·nH2O. A preparation method using ZrOCl28H2O as a precursor gave excellent uniformity. In the ZrO2·nH2O/S-PES composite membranes, the trade-off relationship between the proton conductivity and methanol permeability found in S-PES single polymer membranes was improved. The maximum power density of an MEA using the ZrO2·nH2O/S-PES composite membrane was 65 mW cm-2. The MEA consisting of the composite membrane shows good performance stability up to 600 hours, investigated by galvanostatic operation.

  References

[1] S.R. Samms, S. Wasmus, R.F. Savinell, J. Electrochem. Soc., 143, 1498 (1996).

[2] T. Arimura, D. Ostrovskii, T. Okada, G. Xie, Solid State Ionics, 118, 1 (1999).

[3] J. Roziere, D.J. Jones, Annu. Rev. Mater. Res., 33, 503 (2003).

[4] S.C. Ball, Platinum Met. Rev., 49, 27 (2005).

[5] M. Rikukawa, K. Sanui, Prog.Polym. Sci., 25, 1463 (2000).

[6] T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Solid State Ionics, 106, 219 (1998).

[7] F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, Solid State Ionics, 145, 47 (2001).

[8] K. Miyatake, K. Oyaizu, E. Tsuchida, A.S. Hay, Macromolecules, 34, 2065 (2001).

[9] N. Miyake, J.S. Wainright, R.F. Savinell, J. Electorchem. Soc., 148, A905 (2001).

[10] B. Libby, W.H. Smyrl, E.L. Cussler, Electrochemical and Solid-State Letters, 4, A197 (2001).

[11] T. Mitsui, H. Morikawa, K. Kanamura, Electrochemistry, 70, 934 (2002).

[12] V.S. Silva, B. Ruffmann, H. Silva, Y.A. Gallego, A. Mendes, L.M. Madeira and S.P. Nunes, J. Power Sources, 140, 34 (2005).

[13] V.S. Silva, S. Weisshaar, R. Reissner, B. Ruffmann, S. Vetter, A. Mendes, L.M. Madeira and S. Nunes, J. Power Sources, 145, 485 (2005).

[14] H.W. Zhang, C.H. Du, Y.Y. Xu and B.K. Zhu, Polymers for Advanced Technologies, 18, 373 (2007).

[15] G. Alberti, M. Casciola, E. D’Alessandro and M. Pica, J. Mater. Chem., 14 1910 (2004).

[16] M.L. Hill, Y.S. Kim, B.R. Einsla and J.E. McGrath, J. Membrane Science, 283, 3972 (2006).

[17] H. Wu, Y. Wang and S. Wang, J. New Mater. Electrochem. Sys., 5, 251 (2002).

[18] Savadogo, J. Power Sources, 127, 135 (2004).

[19] Savadogo, J. New Mater. Electrochem. Sys., 1, 47 (1998).

[20] W.A. England, M.G. Cross, A. Hamnett, P.J. Wiseman and J.B. Goodenough, Solid State Ionics, 1, 231 (1980).

[21] F. Wang, M. Hickner, Q. Ji, W. Harrison, J. Mecham, T.A. Zawodzinski, J.E. McGrath, Macromol. Symp., 175, 387 (2001).

[22] X. Ren, T. E. Springer, A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc., 147, 466 (2000).