Comparison of the Photoelectrochemical Characteristics of Dye-Sensitized Inverse-Opal Electrodes Prepared by Various Liquid-Phase Methods

Comparison of the Photoelectrochemical Characteristics of Dye-Sensitized Inverse-Opal Electrodes Prepared by Various Liquid-Phase Methods

Sachiko Matsushita|Chie Nishiyama George Kato Akira Nakajima Toshihiro Isobe Takuya Hashimoto 

Department of Metallurgy & Ceramics Science, Graduate School of Science & Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552

Division of Optical and Electronic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550

Corresponding Author Email: 
matsushita.s.ab@m.titech.ac.jp
Page: 
229-236
|
DOI: 
https://doi.org/10.14447/jnmes.v14i4.95
Received: 
21 February 2011
| |
Accepted: 
11 May 2011
| | Citation
Abstract: 

The photovoltaic characteristics (short circuit current, open circuit voltage, fill factor, and photon-to-electron conversion efficiency) and electrochemical impedance measurements of normal and inverse-opal dye-sensitized electrodes were carried out in a transparent electrolyte (0.6 M triethhanolamine/0.5 M lithium perchlorate in acetonitrile) using three different methods; electrophoretic deposition, TiCl4 coating, and liquid-phase deposition (LPD). X-ray diffraction (XRD) analysis revealed that each electrode was composed of anatase TiO2. The impedance elements discussed previously were substrate resistance (R0), interface resistance at indium tin oxide (ITO)/titanium oxide (TiO2) (R1), contact resistance between TiO2 particles (R2), interface resistance at TiO2/dye/electrolyte and counter electrode/electrolyte (R3), and diffusion resistance of the electrolyte (R4). The internal resistances of inverse opal electrodes were varied with the preparation methods, especially in relation to the contact resistance between R2 and R3. The electrode prepared by LPD exhibited the smallest internal resistances and the highest photon-to-electron conversion efficiency among the three methods.

Keywords: 

self-assembly; photonic crystal; colloidal crystal; self-assembled particle structure; photoelectrode

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The authors thank Mr. Yohey Shibuya, Ms. Miho Kawai and Mr. Nobuhisa Hikichi for their valuable help. This work was partially supported by The Ministry of Education, Culture, Sports, Science

and Technology (21750024), and Nihon University Strategic Projects for Academic Research (Nanotechnology Excellence).

  References

[1] J.E. Wijnhoven, Science, 281, 802 (1998).

[2] S.I. Matsushita, T. Miwa, D.A. Tryk, A. Fujishima, Langmuir, 14, 6441 (1998).

[3] S.I. Matsushita, N. Fukuda, M. Shimomura, Colloid Surf. A, 257, 15 (2005).

[4] C. Tao, W. Zhu, Q. An, G. Li, J. Phys. Chem. C, 114, 10641 (2010).

[5] J.I.L. Chen, E. Loso, N. Ebrahim, G.A. Ozin, J. Am. Chem. Soc., 130, 5420 (2008).

[6] K.A. Arpin, A. Mihi, H.T. Johnson, A.J. Baca, J.A. Rogers, J.A. Lewis, P.V. Braun, Adv. Mater., 22, 1084 (2010).

[7] S. Guldin, S. Hu?ttner, M. Kolle, M.E. Welland, P. Mu?ller-Buschbaum, R.H. Friend, U. Steiner, and N. Te?treault, Nano Letters, 10, 2303 (2010).

[8] S.H.A. Lee, N.M. Abrams, P.G. Hoertz, G.D. Barber, L.I. Halaoui, and T.E. Mallouk, J. Phys. Chem. B, 112, 14415 (2008).

[9] S. Matsushita, S. Fujikawa, S. Onoue, T. Kunitake, M. Shimomura, Bull. Chem. Soc. Jpn., 80, 1226 (2007).

[10] S. Hore, C. Vetter, R. Kern, H. Smit, A Hinsch, Sol. Energy Mater. Sol. Cells, 90, 1176 (2006).

[11] S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, and A.J. Frank, J. Am. Chem. Soc., 125, 6306 (2003).

[12] L.I. Halaoui, N.M. Abrams, T.E. Mallouk, J. Phys. Chem. B, 109, 6334 (2005).

[13] A. Mihi, F. López-Alcaraz, H. Miguez, Appl. Phys. Lett., 88, 193110 (2006).

[14] A. Mihi, M.E. Calvo, J.A. Anta, H. Miguez, J. Phys. Chem. C, 112, 13 (2008).

[15] B. Eun, S. Kwak, W. Lee, N. Park, J. Kim, H. Lee, Adv. Funct. Mater., 19, 1093 (2009).

[16] Z.Z. Gu, S. Hayami, S. Kubo, Q. B. Meng, Y. Einaga, D.A. Tryk, A Fujishima, O. Sato, J. Am. Chem. Soc., 123, 175-6 (2001).

[17] H. Nakajima, T. Mori, Q. Shen, T. Toyoda, Chem. Phys. Lett., 409, 81 (2005).

[18] T. Ishihara, J. Tokue, T. Sano, Q. Shen, T. Toyoda, N. Kobayashi, Jpn. J. Appl. Phys., 44, 2780 (2005).

[19] S. Deki, Y. Aoi, O. Hiroi, A. Kajinami, Chem. Lett., 25, 433 (1996).

[20] S. Matsushita, A. Buffaz, E. Oikawa, T. Hashimoto, J. Nanosci. Nanotechnol., 9, 185 (2009).

[21] Y. Amao, J. Photochem. Photobio. A, 164, 47 (2004).

[22] S. Maegawa, K. Nakano, Wear, 268, 924 (2010).

[23] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, J. Electrochem. Soc., 152, E68 (2005).

[24] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett., 84, 2433 (2004).

[25] N. Koide, A. Islam, Y. Chiba, L. Han, J. Photochem. Photobio. A, 182, 296 (2006).

[26] M. Rahman, M. Salleh, I. Talib, M. Yahaya, J. Power Sources, 133, 293 (2004).

[27] G.B. Appetecch, F. Groce, B. Scrosati, Electrochimica Acta, 40, 991 (1995).

[28] S. Nishimura, A. Shishido, N. Abrams, T.E. Mallouk, Appl. Phys. Lett., 81, 4532 (2002).

[29] A. Mihi, H. Míguez, J. Phys. Chem. B, 109, 15968 (2005).

[30] H. Chen, S. Chen, X.I.E. Quan, Environ. Sci. Technol., 44, 451 (2010).

[31] M.E. Harakeh, L. Halaoui, J. Phys. Chem. C, 114, 2806 (2010).