Electrochemical Corrosion of Al-Li-Sn Alloy in Water for Portable Hydrogen Sources Effect of Aluminum

Electrochemical Corrosion of Al-Li-Sn Alloy in Water for Portable Hydrogen Sources Effect of Aluminum

Shu Liu Mei-qiang Fan*  Da Chen Chun-Ju LV  

Department of Material Science and Engineering, China Jiliang University Hangzhou 310018, P. R. China

Corresponding Author Email: 
fanmeiqiang@126.com
Page: 
197-202
|
DOI: 
https://doi.org/10.14447/jnmes.v14i3.110
Received: 
April 11, 2011
| |
Accepted: 
May 05, 2011
| | Citation
Abstract: 

The hydrogen generation of milled Al−Li−Sn alloy in water as a portable hydrogen source was examined in the current study. The optimized alloy composition presented significant improvement in terms of hydrogen generation rate and amount, with their values respectively reaching 1137 mL g-1 min-1 and 1147 mL g-1with an increase in Li/Sn weight ratio from 1:7 to 1:1. The efficiency of the alloy composition increased up to 99% with approximately 3.4 wt% hydrogen storage amount obtained. The XRD results indicated that the improved aluminum hydrolysis properties were attributed to the formation of the Li−Sn alloy, especially to the complex intermetallic compound Li13Sn5 produced with an increase in Li/Sn weight ratio. The Li−Sn alloy referred to an active site that acted as the initial hydrolysis center, and its hydrolysis byproduct, LiOH, can further stimulate the hydrolysis of the Al−Sn alloy.

Keywords: 

 A. Aluminum alloy, Lithium, Tin; B. Hydrogen generation; C. Ball-milling 

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (Project Nos. 21003112 and 21003111), the Zhejiang Basic Research Program of China (Y4090507), and the Zhejiang Analysis Test Project of China (2009F70010).

  References

[1] G.N. Marba, T.S. Valde, Int. J. Hydrogen Energy, 32, 1625 (2007). 

[2] M. Balat, Int. J. Hydrogen Energy, 33, 4013 (2008).

[3] B. Wang, J. Power Sources, 152, 1 (2005).

[4] U.B. Demirci, O. Akdim, P. Miele, Int. J. Hydrogen Energy, 34, 2638 (2009).

[5] E. Fakiolu, Y. Yurum, T.N. Veziroglu, Int. J. Hydrogen Energy, 29, 1371 (2004).

[6] Y. Huang, Y. Wang, R. Zhao, P.K. Shen, Z. Wei, Int. J. Hydrogen Energy, 33, 7110 (2008).

[7] H. Lee, J.W. Lee, D.Y. Kim, J. Park, Y.T. Seo, H. Zeng, I.L. Moudrakovski, C.I. Ratcliffe, J.A. Ripmeester, Nature, 434, 743 (2005).

[8] M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, R. Bormann, Advanced Engineering Materials, 8, 377 (2006).

[9] O.V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, J. Alloys Compounds, 397, 58 (2005).

[10]E. Czech, T. Troczynski, Int. J. Hydrogen Energy, 35, 1029 (2010).

[11]A. Babak, M. Korosh, Int. J. Hydrogen Energy, 34, 7934 (2009).

[12]O. Noriyuki, Y. Takashi, Method of producing high-pressure containing gas for use as a power source, US3985866.  

[13]C. Haertling, R.J. Hanrahan, J. Smith, R. Smith, J. Nuclear Materials, 309, 195 (2006).

[14]M.H. Grosjean, M. Zidoune, J.Y. Huot, Int. J. Hydrogen Energy, 31, 109 (2006).

[15]A.R. Shashikala, R. Umarani, S.M. Mayanna, A.K. Sharma, Int. J. Electrochem. Science, 3, 993 (2008).

[16]M.Q, Fan, F. Xu, L.X. Sun, Int. J. Hydrogen Energy, 32, 2809 (2007).

[17]http://www.physchem.co.za/Data/Electrode%20Potentials.htm

[18]S.I. Pyun, S.M. Moon, J. Solid State Electrochemistry, 4, 267 (2000).

[19]S. Tanaka, N. Hirose, T. Tanaki, Int. J. Hydrogen Energy, 25, 481 (2000).

[20]K.C. Emregul, A.A. Aksut, Corrosion Science, 42, 2051 (2000).

[21]A.R. Despic, J. Radosevic, P. Dabic, M. Kliskic, Electrochimica Acta, 35, 1743 (1990).

[22]H.B. Shao, J.Q. Zhang, J.M. Wang, Acta Physico–Chimica Sinica, 19, 372 (2003).

[23]M.Q. Fan, Y.Y. Liu, L.N. Yang, C.X. Cao, L.X. Sun, F. Xu, Chemical J. of Chinese Universities, 29, 356 (2008).

[24]C. Suryanarayama, Progress in Materials Science, 46, 1 (2001).