Electrochemical Characterization of InN Thin Films for Biosensing Applications

Electrochemical Characterization of InN Thin Films for Biosensing Applications

Antonio M. Basilio Yu-Kuei Hsu C. C. Chang P. C. Wei Abhijit Ganguly H. C. Shih Yit-Tsong Chen Li-Chyong Chen Kuei-Hsien Chen

Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan

Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 10617, Taiwan

Department of Materials Science, National Tsing-Hua University, Hsinchu 30013, Taiwan

Center of Condensed Matter and Sciences, National Taiwan University, Taipei 10617, Taiwan

Corresponding Author Email: 
chenkh@pub.iams.sinica.edu.tw
Page: 
337-343
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.138
Received: 
20 November 2009
| |
Accepted: 
27 October 2010
| | Citation
Abstract: 

InN, a well-established optoelectronic material, is currently being considered as a promising material for sensor applications. In this study, the fundamental electrochemical properties of InN thin film and its potential for electrode chemical and bio-sensing applications are demonstrated. The cyclic voltammograms of different concentrations of dopamine solution in 1 M HClO4 were measured. Similarly, potentiostatic measurements at 1 V versus Ag/AgCl show stable responses and linear change of current density with concentrations up to 0.475 mM dopamine. The InN thin film also demonstrated repeatable positive photoresponse to cathodic currents in 1 mM Ru(NH3)63+ in 1M KCl solution under a 100 mW cm-2 808-nm laser light illumination at a constant -0.25 V (vs. Ag/AgCl) bias. The cathodic current response showed a 27% enhancement, demonstrating its potential as photocathode. This cathodic photocurrent behavior is explained through the electron accumulation of the InN material.

Keywords: 

biosensor, potentiostatic measurements, dopamine detection, biocompatibility, photoresponse

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgments

This research was supported by the Taiwan International Graduate Program of Academia Sinica, National Science Council, Ministry of Education in Taiwan, and US AFOSR-AOARD.

  References

[1] G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, M. Eickhoff, Adv. Funct. Mater., 13, 841 (2003).

[2] J.L. Chiang, Y.C. Chen, J.C. Chou, Jpn. J. Appl. Phys., 1, 40, 5900 (2001).

[3] G. Steinhoff, M. Hermann, W.J. Schaff, L.F. Eastman, M. Stutzmann, M. Eickhoff, Appl. Phys. Lett., 83, 177 (2003).

[4] Y. Alifragis, G. Konstantinidis, A. Georgakilas, N.A. Chaniotakis, Electroanal., 17, 527 (2005).

[5] C.P. Chen, A. Ganguly, C.H. Wang, C.W. Hsu, S. Chattopadhyay, Y.K. Hsu, Y.C. Chang, K.H. Chen, L.C. Chen, Anal. Chem., 81, 36 (2009).

[6] A. Ganguly, C.P. Chen, Y.T. Lai, C.C. Kuo, C.W. Hsu, K.H. Chen, L.C. Chen, J. Mater. Chem., 19, 928 (2009).

[7] N. Sofikiti, N. Chaniotakis, J. Grandal, M. Utrera, M.A. Sanchez-Garcia, E. Calleja, E. Iliopoulos, A. Georgakilas, Appl. Phys. Lett., 95, (2009).

[8] N.A. Chaniotakis, Y. Alifragis, G. Konstantinidis, A. Georgakilas, Anal. Chem., 76, 5552 (2004).

[9] B.S. Kang, F. Ren, L. Wang, C. Lofton, W.W. Tan, S.J. Pearton, A. Dabiran, A. Osinsky, P.P. Chow, Appl. Phys. Lett., 87, 023508 (2005).

[10] O. Ambacher, J. Phys. D Appl. Phys., 31, 2653 (1998).

[11] H. Lu, W.J. Schaff, L.F. Eastman, J. Appl. Phys., 96, 3577 (2004).

[12] O. Kryliouk, H.J. Park, H.T. Wang, B.S. Kang, T.J. Anderson, F. Ren, S.J. Pearton, J. Vac. Sci. Technol., B, 25, 1891 (2005).

[13] W.T. Lim, J.S. Wright, B.P. Gila, S.J. Pearton, F. Ren, W.T. Lai, L.C. Chen, M.S. Hu, K.H. Chen, Appl. Phys. Lett., 93, 3 (2008).

[14] C.H. Liang, L.C. Chen, J.S. Hwang, K.H. Chen, Y.T. Hung, Y.F. Chen, Appl. Phys. Lett., 81, 22 (2002).

[15] C.Y. Chang, G.C. Chi, W.M. Wang, L.C. Chen, K.H. Chen, F. Ren, S.J. Pearton, J. Electron. Mater., 35, 738 (2006).

[16] Z.H. Lan, C.H. Liang, C.W. Hsu, C.T. Wu, H.M. Lin, S. Dhara, K.H. Chen, L.C. Chen, C.C. Chen, Adv. Funct. Mater., 14, 233 (2004).

[17] C.Y. Chang, G.C. Chi, W.M. Wang, L.C. Chen, K.H. Chen, F. Ren, S.J. Pearton, Appl. Phys. Lett., 87, 093112 (2005).

[18] H. Lu, W.J. Schaff, L.F. Eastman, Appl. Phys. Lett., 82, 1736 (2003).

[19] I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, W.J. Schaff, Phys. Rev. Lett., 92, 036804 (2004).

[20] C.-F. Chen, C.-L. Wu, S. Gwo, Appl. Phys. Lett., 89, 252109 (2006).

[21] J.T. Chen, C.L. Hsiao, H.C. Hsu, C.T. Wu, C.L. Yeh, P.C. Wei, L.C. Chen, K.H. Chen, J. Phys. Chem. A, 111, 5 (2007).

[22] W.C. Poh, K.P. Loh, W.D. Zhang, S. Triparthy, J.-S. Ye, F.-S. Sheu, Langmuir, 20, 5484 (2004).

[23] R. Dimitrova, L. Catalan, D. Alexandrov, A. Chen, Electroanal., 19, 1799 (2007).

[24] R. Dimitrova, L. Catalan, D. Alexandrov, A. Chen, Electroanal., 20, 789 (2008).

[25] Y.S. Lu, C.C. Huang, J.A. Yeh, C.F. Chen, S. Gwo, Appl. Phys. Lett., 91, 3 (2007).

[26] M.C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M.D. Koppang, J.E. Butler, G. Lucazeau, M. Mermoux, J.W. Strojek, G.M. Swain, Anal. Chem., 72, 3793 (2000).

[27] T. Lindgren, M. Larsson, S.E. Lindquist, Sol. Energy Mater. Sol. Cells, 73, 377 (2002).

[28] V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E. E. Haller, Phys Status Solidi B-Basic Res., 230, R4 (2002).

[29] V.Y. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys Status Solidi B-Basic Res 229, R1 (2002).

[30] C.G. Van de Walle, J. Neugebauer, Nature, 423, 626 (2003).