Estimation of the Hydrogen Flux from a PEM Electrolyzer, based in the Solar Irradiation Measured in Zacatecas Mexico

Estimation of the Hydrogen Flux from a PEM Electrolyzer, based in the Solar Irradiation Measured in Zacatecas Mexico

S.M. Duron-TorresL.E. Villagrana-Munoz V.M. Garcia-Saldivar I.L. Escalante-Garcia L.G. Arriaga-Hurtado 

Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Edif. 6, Km. 6 Carretera Zacatecas-Guadalajara, Ejido la Escondida, 98160, Zacatecas.

Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, Qro. C.P. 76703.

Corresponding Author Email: 
duronsm@prodigy.net.mx
Page: 
235-238
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.164
Received: 
18 November 2009
| |
Accepted: 
29 January 2010
| | Citation
Abstract: 

In this study, the calculated quantity of hydrogen produced in a typical Polymer Exchange Membrane (PEM) electrolyzer is presented. For the hydrogen flux calculation, solar irradiation data as measured by the “Siglo XXI” Solarimetric Station in Zacatecas,Mexico, was used. Solar data was obtained in the period from November 2007 to April 2008, when the mean irradiation measured was 6.6 kW-h m-2. In order to obtain the estimation of H2, a linear equation of the behavior pattern of a previously characterized Solar-Hydrogen (SH) system was used. The results indicate that the maximum hydrogen production would be obtained in April, with a value of 9 NL min-1 corresponding to a radiation intensity close to 900 W m-2, while a minimum obtained hydrogen value was calculated as 6 NL min-1 with respect to a radiation close to 600 W m-2 for November.

Keywords: 

Hydrogen, PEM, Solar irradiation, Zacatecas Mexico

1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors acknowledge the Mexican Council for Science and Technology (Conacyt- Fomix-Zacatecas, Proj. 16112 and 81728) for the financial support.

  References

[1] D. Dasa and T.N. Veziroglu, Int. J. Hydrogen Energy, 26, 13 (2001).

[2] V.A. Goltsova and T.N. Veziroglu, Int. J. Hydrogen Energy, 26, 909 (2001).

[3] M. Momirlana and T.N. Veziroglu, Int. J. Hydrogen Energy, 30, 795 (2005).

[4] G. Doucet, C. Etiévant, C. Puyenchet, S. Grigoriev and P. Millet, Int. J. Hydrogen Energy, 34, 4983 (2009).

[5] R.E. Clarke, S. Giddey, F.T. Ciacchi, S.P.S. Badwal, B. Paul and J. Andrews, Int. J. Hydrogen Energy, 34, 2531 (2009)

[6] L.G. Arriaga, W. Martinez, U. Cano and H. Blud, Int. J. Hydrogen Energy, 32, 2247 (2007).

[7] P. Kruger, Int. J. Hydrogen Energy, 33, 5881 (2008).

[8] J.O’M. Bockris and T.N. Veziroglu, Int. J. Hydrogen Energy, 32, 1605 (2007).

[9] R.E. Clarke, S. Giddey, F.T. Ciacchi, S.P.S. Badwal and B. Paul, J. Andrews, Int. J. Hydrogen Energy, 34, 2531 (2009).

[10] P.Hollmuller, J.M. Joubert, B. Lachard and K. Yuan, Int. J. Hydrogen Energy, 25, 97 (2000).

[11] A. Szyszka and W. Neurburg, Int. J. Hydrogen Energy, 19, 823 (1994).

[12] J.P. Vanhanen, P.D. Lund and J.S. Tolonen, Int. J. Hydrogen Energy, 23, 267 (1998).

[13] S. Galli, and M. Stefanoni, Int. J. Hydrogen Energy, 22, 453 (1997).

[14] P.A. Lehmann, C.E. Chamberlin and G. Pauletto, Int. J. Hydrogen Energy, 22, 465 (1997).

[15] A. Szyszka, Int. J. Hydrogen Energy, 23, 849 (1998).

[16] H. Barthels, W.A. Brocke, K. Bonhoff, H.G. Groehn, G. Heuts, M. Lennartz, H. Mai, J. Mergel, L. Schmid and Ritzenhoff, Int. J. Hydrogen Energy, 23, 295 (1998).

[17] M.L. Gutiérrez-Sánchez, undergraduate thesis, Universidad de Quintana Roo, México (2005).

[18] L.E. Villagrana-Muñoz, undergraduate thesis, Universidad Autónoma de Zacatecas, México (2008).

[19] Irradiación Media en España. Instituto Nacional de Medio Ambiente, www.aemet.es (2008).