Electrochemical Impedance Study and Performance of PdNi Nanoparticles as Cathode Catalyst in a Polymer Electrolyte Membrane Fuel Cell

Electrochemical Impedance Study and Performance of PdNi Nanoparticles as Cathode Catalyst in a Polymer Electrolyte Membrane Fuel Cell

G. Ramos-SanchezA. Santana-Salinas G. Vazquez-Huerta O. Solorza-Feria 

Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN. A. Postal 14-740, 07360 México D.F., México

Page: 
213-217
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.161
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The carbon-dispersed bimetallic PdNi was prepared by borohydride reduction method using PdCl2 and NiCl2 as precursors in a THF solution. The PdNi loading (mg cm-2) and PdNi weight percentage /carbon Vulcan (PdNi wt%) were optimized, by using the Simplex method. At optimum condition of PdNi loading and PdNi wt% the Electrode Membrane Assembly Performance was evaluated, using the PdNi electrocatalyst as cathode and Pt-Etek carbon cloth (0.5 mg cm-2) as anode. The maximum power density (122 mWcm-2) was attained with 45% of PdNi wt%, at 30 psi and 80 °C. On the other hand, the electrochemical impedance spectroscopy (EIS) was used to investigate the catalytic activity and the mechanism of the Oxygen Reduction Reaction (ORR) on PdNi, in 0.5M H2SO4. The Nyquist and Bode spectra of PdNi electrocatalyst present one or two time constants depending on the electrode potential, E applied. The time constants were associated to the O2 to H2O multi-electron charge transfer reaction (n=4e-) and reduction of H2O2 to produce H2O (n=2e-). The Tafel slope (- b=0.066 Vdec-1) and the charge transfer coefficient (α=0.89) were obtained from the impedance spectra, at optimum condition of PdNi loading and PdNi wt%.

  References

[1] S. Gottesfeld, T. A, Zawodzinski, “Advances in Electrochemical Science and Engineering”, Wiley VCH, Weinheim, Germany, 1997.

[2] H. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Cat. B: Enviromental, 56, 9 (2005).

[3] A. Katsounis, S. Brosda, C.G. Bayenas, in “Encyclopedia of Electrochemistry, Ch. 2 Electrocatalysis”, Ed. D.D. Macdonald, P. Schmuki,. Wiley-VCH, 2007, p. 23. Vol. 5.

[4] V. Stanmekovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Angew. Chem. Int. Ed., 45, 2897 (2006).

[5] Pastis, S. Mentus, Materials Chemistry and Physics, 116, 94 (2009).

[6] K. Suárez-Alcantara, O. Solorza-Feria, J. Power Sources, 192, 165 (2009).

[7] B. Andreaus, M. Eikerling, Catalyst layer Operation in PEM Fuel Cells: from structural pictures to tracatable models. Topics in Applied Physiscs (2009) 113 (Device and Materials Modeling in PEM Fuel Cells) 41-90.

[8] G. Ramos-Sánchez, H. Yee-Madeira, O. Solorza Feria, Int. J. Hydrogen Energy, 33, 3596 (2008).

[9] G. Ramos-Sánchez, O. Solorza-Feria, ECS Trans., 20, 407 (2009).

[10] F. Hillier, J. Lieberman “Introduction to Operations Research, 8th edition”, Mc Graw Hill, USA (2005).

[11] W. Wang, D. Zheng, Ch. Du, Z. Zou, X. Zhang, B. Xia, H. Yang, D.L. Akins. J. Power Sources, 167, 243 (2007).

[12] G. Ramos-Sánchez, H. Yee-Madeira, O. Solorza-Feria, Int. J. Hydrogen Energy, 33, 3596 (2008).

[13] G. Ramos-Sánchez, O. Solorza-Feria, Int. J. Hydrogen Energy, In press, doi:10.1016/j.ijhydene.2009.10.111.

[14] C.M. Sánchez-Sánchez and A.J. Bard, Anal. Chem., 81, 8094 (2009).

[15] K. Kinoshita, Electrochemical Oxygen Technology, Wiley-Interscience Publication, New York, (1992).

[16] Bernard A. Boukamp. Solid State Ionics, 20, 31 (1986).

[17] E. Springer, A. Zawodzinski, M.S. Wilson, S. Gottesfeld, J. Electrochem. Soc., 143, 587 (1996).

[18] G.S. Tasic, S.S. Miljanic, M.P. Marceta, D.P. Saponjic, Vladimir M. Nikolic, Electrochem. Commun., 11, 2097 (2009).

[19] T. Romero-Castañon, L.G. Arriaga, U. Cano-Castillo, J. Power Sources, 118, 179 (2003).

[20] K. Suarez-Alacantara, O. Solorza-Feria, Electrochim. Acta, 53,4981 (2008).

[21] R.C. Dante, F. Menzl, J. Lehmann, C. Sponholz, O. Luschtinetz, O. Solorza-Feria, J. Appl. Electrochem., 36, 187 (2006).

[22] R.G. Gonzalez-Huerta, R. Gonzalez-Cruz, S. Citalan-Cigarroa, C. Montero-Ocampo, J. Chavez-Carvayar, O. Solorza-Feria, J. New Mat. Electrochem. Systems, 8, 15 (2005).

[23] K. Suarez-Alcantara, A. Rodríguez-Castellanos, S. Durón-Torres, O. Solorza-Feria, J. Power Sources, 171, 381 (2007).

[24] J.J. Salvador-Pascual, S. Citalán-Cigarroa, O. Solorza-Feria, J. Power Sources, 172, 229 (2007).