Photoelectrocatalysis with Drop-Cast Tungsten Trioxide Films

Photoelectrocatalysis with Drop-Cast Tungsten Trioxide Films

M. Neumann-SpallartS.B. Sadale 

Groupe d’Étude de la Matière Condensée, C.N.R.S., 1, place Aristide Briand, 92195 Meudon CEDEX, France.

Corresponding Author Email: 
mns@cnrs-bellevue.fr
Page: 
127-131
|
DOI: 
https://doi.org/10.14447/jnmes.v13i2.180
Received: 
23 Nobember 2009
| |
Accepted: 
9 June 2010
| | Citation
Abstract: 

Polycrystalline, monoclinic, uniform WO3 films of up to 2.5 πm thickness were prepared by drop casting onto F:SnO2/glass using as precursor peroxo-tungstic acid and polyethylene glycol in water, and firing in air at 520°C. Under illumination of such n-type semiconducting electrodes in junctions with aqueous electrolytes, photocurrents were produced. Un-der depletion conditions, IPCEs (incident photon to current efficiencies) of up to 0.7 at 365 nm and 0.2 at 405 nm were obtained. The pho-tosensitivity extends into the visible with an onset at 470 nm. This opens the way for solar light powered electrochemical processes likepollutant degradation.

Keywords: 

photoelectrocatalysis, WO3, acid orange 7

1. Introduction
2. Experimental
3. Results and Discussion
Acknowledgements

The authors want to thank Dr. A. Belaidi, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, for preparing and measuring cross sections of samples by scanning electron microscopy. Dr. G. Nauer, CEST competence center, Austria, is thanked for the TOC measurements.

  References

[1] L. Kopp, B. L. Harmon, S. H. Liu, Solid State Commun., 22, 677 (1977).

[2] N. S. Gaikwad, G. Waldner, A. Brüger, A. Belaidi, S.M. Chaqour, M. Neumann-Spallart, J. Electrochem. Soc., 152 (5), G411 (2005).

[3] H. Gerischer in “Solar Energy Conversion – Solid State Physics Aspects”, Ed., B. O. Seraphin, Springer, New York 1979.

[4] W. Gissler and R. Memming, J. Electrochem. Soc., 124, 1710 (1977).

[5] M. Pourbaix, “Atlas d’équilibres électrochimiques”, Gauthier-Villars et Cie, Paris 1963.

[6] G. Waldner, A. Brüger, N.S. Gaikwad, M. Neumann-Spallart, Chemosphere, 67, 779 (2007).

[7] A. Mills and S. Le Hunte, J. Photochem. Photobiol. A: Chem., 108, 1 (1997).

[8] J. Krýsa, private communication.

[9] D. Monllor-Satoca, L. Borja, A. Rodes, R. Gómez, P. Salvador, Chem. Phys. Chem., 7, 2540 (2006).

[10] S. B. Sadale, S. M. Chaqour, O. Gorochov, M. Neumann-Spallart, Materials Research Bulletin, 43, 1472 (2008).

[11] C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B, 105, 936 (2001).

[12] M. Hepel and S. Hazelton, Electrochim. Acta, 50, 5278 (2005).

[13] P. S. Shinde, P. S. Patil, P. N. Bhosale, A. Brüger, G. Nauer, M. Neumann-Spallart, C. H. Bhosale, Applied Catalysis B: Environmental, 89, 288 (2009).

[14] T. Lana Villarreal, R. Gómez, M. Neumann-Spallart, N. Alonso-Vante, P. Salvador, J. Phys. Chem. B, 108, 15172 (2004).

[15] Powder Diffraction File Alphabetic PDF-2 Data Base, file 43-1035, International Center of Diffraction Data, Newtown Square, PA, USA, 1994.