Polyaniline Film as a Metal-free Electrocatalyst for the Anode Reaction of the Direct Ascorbic Acid Fuel Cells

Polyaniline Film as a Metal-free Electrocatalyst for the Anode Reaction of the Direct Ascorbic Acid Fuel Cells

Jun YanoHisashi Hirayama Akira Kitani 

Department of Engineering Science, Niihama National College of Technology, Yagumocho 7-1, Niihama, Ehime 792-8580, Japan

Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashihiroshima, Hiroshima 739-0046, Japan

Corresponding Author Email: 
yano@sci.niihama-nct.ac.jp
Page: 
95-98
|
DOI: 
https://doi.org/10.14447/jnmes.v13i2.175
Received: 
20 April 2009
| |
Accepted: 
13 June 2010
| | Citation

OPEN ACCESS

Abstract: 

A polyaniline film was prepared on the electrode surface to employ use it as an electrocatalyst for the anodic reaction of the direct ascorbic acid fuel cells. The activity was evaluated for 1) the effect of the type of dopant anion, 2) the durability of the catalytic action, and 3) the effect of the metal dispersion. The highest electrocatalytic activity was obtained with by the SO42--doped PANI film. The PANI film improved the durability of the catalytic action. The metal dispersion deactivated rather than activated the modified PANI film-modified electrode. The modified PANI film-modified electrode was regarded as a promising anode containing no harmful heavy metals and precious Pt.

Keywords: 

polyaniline; ascorbic acid; direct ascorbic acid fuel cell; direct methanol fuel cell; anode

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

Financial support by the Electric Technology Research Foundation of Chugoku is acknowledged. We also gratefully acknowledge support for this research by a grant from the Kato Foundation for the Promotion of Science.

  References

[1] M. Castro-Luna, J. Appl. Electrochem., 30, 1137 (2000).

[2] M. Goetz, H. Wendt, J. Appl. Electrochem., 31, 811 (2001).

[3] R. Dillon, S. Srinivasan, A. S. Arico, V. Antonucci, J. Power Sources, 127, 112 (2004).

[4] A.S. Aricò, V. Baglio, E. Modica, A. Blasi, V. Antonucci, Electrochem. Commun., 6, 164 (2004).

[5] Heinzel, V. M. Barragán, J. Power Sources, 84, 70 (1999).

[6] H. Laborde, J. Léger, C. Lamy, F. Garnier, A. Yassar, J. Appl. Electrochem., 20, 524 (1990).

[7] H. Laborde, J. Léger, C. Lamy, J. Appl. Electrochem., 24, 219 (1994).

[8] J. Yano, T. Shiraga, A. Kitani, J. Solid-State Electrochem., 12, 1179 (2008).

[9] For a review, T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds, Handbook of Conducting Polymers, Marcel Dekker, New York, U.S.A. (1998).

[10] J. Yano, T. Shiraga, A. Kitani, J. New Mat. Electrochem. Systems, in press.

[11] Z. Qi, M. Hollett, A. Attia, A. Kaufman, Electrochem. Solid-State Lett. 5, A129 (2002).

[12] Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, J. Léger, Electrochim. Acta, 49, 3901 (2004).

[13] K. Matsuoka, Y. Iriyama, T. Abe. M. Matsuoka, Z. Ogumi, J. Power Sources, 150, 27 (2005).

[14] K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, T. Kobayashi, J. Power Sources, 115, 236 (2003).

[15] Z. P. Li, B. H. Liu, K. Arai, S. Suda, J. Electrochem. Soc., 150, A868 (2003).

[16] S. Ha, B. Adams, R. I. Masel, J. Power Sources, 128, 119 (2004).

[17] M. M. Mench, H. M. Chance, C. Y. Wang, J. Electrochem. Soc., 151, A144 (2004).

[18] S. K. Mondal, R. K. Raman, A. K. Shukla, N. Munichandraiah, J. Power Sources, 145, 16 (2005).

[19] N. Fujiwara, S. Yamazaki, Z. Siroma, T. Ioroi, K. Yasuda, Electrochem. Commun., 8, 720 (2006).

[20] N. Fujiwara, Z. Siroma, T. Ioroi, K. Yasuda, J. Power Sources, 164, 457 (2007).

[21] N. Fujiwara, S. Yamazaki, Z. Shiroma, T. Ioroi, K. Yasuda, N. Fujiwara, J. Power Sources, 167, 32 (2007).

[22] G. Casella, M. R. Guascito, Electroanalysis, 9, 1381 (1997).