Impact of mass customization on bill of materials structure and master production schedule

Impact of mass customization on bill of materials structure and master production schedule

Clément Chatras
Vincent Giard
Mustapha Sali

LAMSADE, PSL – Université Paris-Dauphine Place de Lattre de Tassigny F75775 Paris, France

DRM, PSL – Université Paris-Dauphine Place de Lattre de Tassigny F75775 Paris, France

Renault SAS, PSL – Université Paris-Dauphine Place de Lattre de Tassigny F75775 Paris, France

Corresponding Author Email: 
clement.chatras@renault.com, vincent.giard@dauphine.fr, mustapha.Sali@dauphine.fr
Page: 
51-90
|
DOI: 
https://doi.org/10.3166/JESA.49.51-90
Received: 
10/12/2014
|
Accepted: 
29/11/2015
|
Published: 
29 February 2016
| Citation

OPEN ACCESS

Abstract: 

The creation, updating and pointing of the full set of the Bills of Materials corresponding to each end-product is extremely complex in a mass customization context, because of the great variety of both end products and components and the existence of commercial and technical constraints between the alternative components (AC) ensuring that variety. Customers can no longer define their product requirements by specifying a list of components and sales department cannot issue forecasts either at end-product or component level. Within the last two decades, to address these difficulties, some carmakers developed a new approach to describe products. This product description, which does not seem to have ever been theorized in the literature, is based on product market features through the concept of alternative services. The conversion to a physical Bill of Materials – that remain mandatory for the Master Production Schedule definition and for the production activities – is done through the use of predicates. In this paper we first develop this new approach and then describe an application for drawing up MPSs, that is not straightforward beyond the frozen horizon.

Keywords: 

mass customization, planning bill of materials, generic bill of materials, alternative services, master production schedule, automotive industry.

1. Introduction
2. Analyse de la diversité offerte en production de masse fortement diversifiée
3. Analyse de la littérature
4. Structuration des nomenclatures d’une famille de produit en automobile
5. Planification de la production en production de masse fortement diversifiée
6. Conclusion
  References

Alblas A, Zhang L.L., Wortmann H. (2012). Representing Function-Technology Platform Based on the Unified Modelling Language, International Journal of Production Research vol. 50, n° 12, p. 3236-3256.

Anderson, D. M., Pine II, J. (1997). Agile Product Development for Mass Customization: How to Develop and Deliver Products for Mass Customization, Niche Markets, JIT, Build-to-Order and Flexible Manufacturing, McGraw-Hill.

Bertrand J.W.M., Zuijderwijk M., Hegge H.M.H. (2000). Using hierarchical pseudo bills of material for customer order acceptance and optimal material replenishment in assemble to order manufacturing of non-modular products, International Journal of Production Economics, vol. 66, n° 2, p. 171-184.

Camisullis C. (2008). Les déterminants de la capacité d’une chaîne logistique amont. Thèse en Sciences de Gestion, Université Paris Dauphine, 12/3/2008.

Camisullis C., Giard V., Mendy-Bilek G. (2010). The information to share in upstream supply chains dedicated to mass production of customized products for allowing a decentralized management, Cahier du LAMSADE, 296.

Childerhouse P., Disney S.M., Towill D.R. (2008). On the impact of order volatility in the European automotive sector, International Journal of Production Economics, vol. 114, n° 1, p. 2-13.

Date C.J. (2012). Database Design and Relational Theory, O’Reilly.

Erens F.J., Hegge H.M.H. (1994). Manufacturing and Sales Co-Ordination for Product Variety. International Journal of Production Economics, vol. 37, n° 1, p. 83-99.

Erens F., McKay A, Bloor S. (1994). Product Modelling Using Multiple Levels of Abstraction Instances as Types. Computers in Industry, vol. 24, n° 1, p. 17–28.

Erens F., Wortman H. C. (1996). Generic Product Modeling for Mass Customization. Implementation Road Map 96.

Garwood D. (1995). Bills of Materials - Structures for Excellence (5e ed,) Dogwood Publishing Company, Marietta G.A

Giard V., Camisullis C. (2010). Détermination des stocks de sécurité dans une chaîne logistique-amont dédiée à une production de masse de produits fortement diversifiés, Journal Européen des Systèmes Automatisés (APII-JESA), vol. 44, n° 8, p. 975-1010.

Giard V., Sali M. (2012). Pilotage d’une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire, Journal Européen des Systèmes Automatisés (APII-JESA), vol. 46, n° 1, p. 73-102.

Hegge H.M.H. (1992). A Generic Bill-of-Material Processor Using Indirect Identification of Products. Production Planning & Control. vol. 3, n° 3, p. 336-42.

Hegge H.M.H., Wortmann J.C. (1991). Generic bill-of-material: a new product model. International Journal of Production Economics, vol. 23, n° 1–3, p. 117-128.

Jiao J., Tseng M.M., Ma Q., Zou Y. (2000). Generic Bill-of-Materials-and-Operations for High-Variety Production Management. Concurrent Engineering: research and applications, vol. 8, n° 4, p. 297-321.

Kendall M. G. (1976). Time series, Griffin, London.

Mather H. F. (1986). Design, Bills of Materials, and Forecasting–the Inseparable Threesome. Production and Inventory Management Journal, vol. 27, n° 1, p. 90–107.

Niranjan T.T., Wagner S.M., Aggarwal V. (2011). Measuring information distortion in realworld supply chains. International Journal of Production Research, vol. 49, n° 11,p. 3343-3362.

Olsen K. A., Saetre P. (1997). Managing Product Variability by Virtual Products. International Journal of Production Research, vol. 35, n° 8, p. 2093-2108.

Olsen K.A., Saetre P. Thorstenson A. (1997). A procedure oriented generic Bill of Materials. Computers & Industrial Engineering, vol. 32, n° 1, p. 29-45.

Orlicky J.A., Plossl G.W., Wight O.W. (1972). Structuring the Bill of Material for MRP. Production and Inventory Management Journal, vol. 13, n° 4, p. 19-42.

Pil F.K., Holweg M. (2004). Linking Product Variety to Order-Fulfillment Strategies, Interfaces, vol. 35, n° 5, p. 394-403.

Romanos M. S. (1989). Demand forecasting for parts used in modular products; a case study, Engineering Costs and Production Economics, vol. 17, n° 1-4, p. 231-244.

Rusk P. S., Barber K.D. (1989). Structuring the Bills of Material for a Complex Make-to-Order Product (A Case Study). Engineering Costs and Production Economics, vol. 15, p. 215-22.

Sali M. (2012). Exploitation de la demande prévisionnelle pour le pilotage des flux amont d’une chaîne logistique dédiée à la production de masse de produits fortement diversifiés, Thèse en Sciences de Gestion, Université Paris Dauphine, 06/2012.

Sali M., Giard V. (2015). Monitoring the production of a supply chain with a revisited MRP approach, Production Planning & Control, vol. 26, n° 10, p. 769-785.

Stonebraker P. W. (1996). Restructuring the bill of material for productivity: A strategic evaluation of product configuration. International Journal of Production Economics, vol. 45, n° 1-3, p. 251-260.

Tallon W.J. (1989). À Comparative Analysis of Master Production Scheduling Techniques for Assemble-To-Order Products. Decision Sciences vol. 20, n° 3, p. 492–506.

van Veen E. A., Wortmann J. C. (1992). New developments in generative BOM processing systems. Production, Planning & Control, vol. 3, n° 3, p. 3327-335.