CoSelect: Statistical and selective adjustment of processes

CoSelect: Statistical and selective adjustment of processes

Éric Pairel

Université Savoie Mont Blanc, SYMME, F-74000 Annecy, France

Corresponding Author Email: 
eric.pairel@univ-savoie.fr
Page: 
127-145
|
DOI: 
https://doi.org/10.3166/JESA.49.127-145
Received: 
12 May 2015
|
Accepted: 
8 October 2015
|
Published: 
30 April 2016
| Citation
Abstract: 

The issue of the adjustment problem for process creating a drift and a dispersion on the characteristics of their products is placed. The known methods of SPC and SPA for multi-input and multi-output processes are briefly recalled. The very general form of the direct variational model for such processes is given. The proposed statistics and selective adjustment method is presented with this general form of direct model. It is then used to steer, thanks to the CoSelect software which implements it, the simulation of a production of 150 pieces. The results are compared to those obtained with a steering by the pseudo-inverse model that can be built for this production. An Internet link allows to download the CoSelect 2.0 software.

Keywords: 

CoSelect, multivariate adjustment, SPC, SPA

1. Introduction
2. Modèle variationnel direct utilisé par CoSelect
3. Méthode CoSelect
4. Simulation du pilotage par CoSelect d’un procédé industriel
5. Conclusion
Remerciements
  References

Bersimis S., Psarakis S., & Panaretos J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517–543. doi:10.1002/qre.829.

Del Castillo E., & Rajagopal R. (2002). A multivariate double EWMA process adjustment scheme for drifting processes. IIE Transactions, 34, 1055–1068.

Del Castillo E., Pan R., & Colosimo B. M. (2003). A unifying view of some process adjustment methods. Journal of Quality Technology, 35(3), 286–293.

Del Castillo E., (2006). Statistical process adjustment: a brief retrospective, current status, and some opportunities for further work. Statistica Neerlandica, 60 (3), 309–326.

Deming W. E. (1982). Out of the Crisis. The MIT Press, 1982.

Grubbs F. E., (1983). An Optimum Procedure for Setting Machines or Adjusting Processes. Journal of Quality Technology, 15, 186-189. (A reprint of an article from the July 1954 issue of Industrial Quality Control).

Hotelling H., (1947). Multivariate quality control—illustrated by the air testing of sample bombsights. Techniques of Statistical Analysis, Eisenhart C, Hastay MW, Wallis WA (eds.). McGraw-Hill: New York, 111–184.

Liu L., Ma Y., & Tu Y. (2013). Multivariate setup adjustment with fixed adjustment cost. International Journal of Production Research, 51(5), 1392–1404. doi:10.1080/00207543.2012.693640.

Pairel É., & Goldschmidt E. (2010). Procédé de préparation de réglages d'outils, dispositif de préparation de réglages d'outils et procédé de réglage d'outils. Brevet Européen en copropriété Cetim-Ctdec, Université Savoie Mont Blanc, publié le 04/08/2010.

Pairel É., Goldschmidt E., Vayre, B., Adragna, P.-A., & Pillet, M. (2011). Copilot Pro ® : A full method for the steering of the machining. International Journal of Metrology and Quality Engineering, 2(1), 39–44. doi:10.1051.

Runger G., Lian Z., & Del Castillo E. (2010). Optimal multivariate bounded adjustment. IIE Transactions, 42(10), 746–752. doi:10.1080/07408171003670967.

Shewhart W. A., (1931). Economic Control of Quality of Manufactured Product. ASQ Quality Press, 1931, 501 pages.

Tiplica T. (2002). Contributions à la maîtrise statistique des processus industriels multivariés. Thèse de doctorat en Sciences et Technologies Industrielles. Université d’Angers.

Tseng S.-T., Chou R.-J., & Lee S.-P. (2002). A study on a multivariate EWMA controller. IIE Trasactions, 34, 541–549.

Yang L., & Sheu S.-H. (2005). Integrating multivariate engineering process control and multivariate statistical process control. The International Journal of Advanced Manufacturing Technology, 29(1-2), 129–136. doi:10.1007/s00170-004-2494-8.