Comparative analysis of breast cancer detection using K-means and FCM & EM segmentation techniques

Comparative analysis of breast cancer detection using K-means and FCM & EM segmentation techniques

V. Nagi Reddy P. Subba Rao 

VFSTR Deemed to be University, Vadlamudi, Guntur, India

Dept of IT, VFSTR Deemed to be University, Vadlamudi, Guntur, India

Corresponding Author Email:
31 December 2018
| Citation



About this study, we would like to existent breast cancer detection revealing procedures, established on the conservative a new spatial fuzzy-technique and K-means technique investigation of breast images. Although, the K-means was previously utilized in breast segmentation of image, along with segmentation of image at overall, this miss the mark to exploit the robust spatial association amongst neighbouring pixels. Spatial fuzzy C-means (sfcm’s) procedure, that is exploit the evidence of spatial accurately and generate extraordinary breast image segmentation. To check the segmentation performance of spatial fuzzy C-means, K-means and expectation maximization methods, we have used 5 ground truth images. The outcomes of segmentation that are demonstrated extra precise segmentation with the sfcm’s matched with that of K-means and expectation and maximization methods are offered statistically and graphically.


SFCM, mammogram image, fuzzy, K-means, Em algorithm

1. Introduction
2. Methods and materials
3. Investigational outcomes
4. Discussions
5. Conclusion

Abo-Eleneen Z. A., Gamil A. (2013). A novel statistical approach for detection of suspicious regions in digital mammogram. Journal of the Egyptian Mathematical Society, Vol. 21, No. 2, pp. 162-168.

Abuchaiba I. S. I., Elfarra B. K.  (2013). New feature extraction method for mammogram CAD diagnosis. International Journal of Signal Processing, Vol. 6, No. 1.

Basheer N. M., Mohammed M. H. (2013). Segmentation of breast masses in digital mammograms using adaptive median filtering and texture analysis. Int. J. Recent Technol. Eng. (IJRTE), Vol. 2, No. 1, pp. 2277-3878.

Behrenbruch C., Marias K., Armitage P. (2001). Prone-supine breast MRI registration for surgical visualisation” medical imaging understanding and analysis. Unv of Birmingham.

DeWyngaert J. K., Noz M. E., Ellerin B., Kramer E. L., Maguire Jr G. Q., Zeleznik M. P. (2004). Procedure for unmasking localization information from prostascint scans for prostate radiation therapy treatment planning. Int J Radiat Oncol Biol Phys, Vol. 60, No. 2, pp. 654-662.

Dinsha D. (2014). Breast tumor Segmentation and classification using SVM and Bayesian from thremogram images. Unique Journal of Engineering and Advanced Sciences, Vol. 2, pp. 147-151.

Eubank W. B., Mankoff D. A., Vesselle H. J., Eary J. F., Schubert E. K., Dunnwald L. K., Lindsley S. K., Gralow J. R., Austin-Seymour M. M., Ellis G. K., Livingston R. B. (2002). Detection of locoregional and distant recurrences in breast cancer patients by using FDG PET. Radio Graphics, Vol. 22, No. 1, pp. 5-17.

Hathaway P. B., Mankoff D. A., Maravilla K. R., Austin-Seymour M. M., Ellis G. K., Gralow J. R., Cortese A. A., Hayes C. E., Moe R. E. (1999). Value of combined FDG PET and MR imaging in the evaluation of suspected recurrent local-regional breast cancer: Preliminary experience. Radiology, Vol. 210, pp. 807-814.

Inderpal S., Dinesh K. (2014). A review on different image segmentation techniques. IJAR, Vol. 4.

Khokher M. R., Ghafoor A., Siddiqui A. M. (2012). Image segmentation using multilevel graph cuts and graph development using fuzzy rule-based system. IET Image Processing, Vol. 7, No. 3, pp. 201-211.

Liberman L., Morris E. A., Lee M. J., Kaplan J. B., LaTrenta L. R., Menell J. H., Abramson A. F., Dashnaw S. M., Ballon D. J., Dershaw D. D. (2002). Breast lesions detected on MR imaging: Features and positive predictive value. AJR, Vol. 179, No. 1, pp. 171-178.

Maguire Jr G. Q., Jaeger J., Farde L., Noz M. E. (1987). Use of graphical techniques for error evaluation. Journal of Medical Systems, Vol. 11, pp. 277-286.

Maguire Jr G.Q., Noz M. E., Rusinek H., Jaeger J., Kramer E. L., Sange R J. J., Smith G. (1991). Graphics applied to image registration. IEEE Computer Graphics and Applications, Vol. 11, No. 2, pp. 20-28.

Noz M. E., Maguire Jr G. Q., Zeleznik M. P., Kramer E. L., Mahmoud F., Crafoord J. (2001). A versatile functional-anatomic image fusion method for volume data sets. Journal of Medical Systems, Vol. 25, pp. 297-307.

Pfluger T., Vollmar C., Wismüller A., Dresel S., Berger F., Suntheim P., Leinsinger G., Hahn K. (2000). Quantitative comparison of automatic and interactive methods for MRI-SPECT image registration of the brain based on 3-dimensional calculation of error. Journal of Nuclear Medicine, Vol. 41, pp. 1823-1829.

Schettino C. J., Noz M. E., Kramer E., Taneja S., Lepor H. (2000). Impact of image fusion of the 111 in Capromab pendetide with MR or CT in patients with recurrent prostate CA. Journal of Nuclear Medicine, Vol. 42, pp. 294P.

Shanthi S., Bhaskaran V. M. (2014). Modified artificial bee colony based feature selection: A new method in the application of mammogram image classification. International Journal of Science, Engineering and Technology Research, Vol. 3, No. 6.

Shraddha T., Krishna K., Singh B. K., Singh R. P. (2012). Image segmentation: A review. International Journal of Computer Science and Management Research, Vol. 1, No. 4.

Teifke A., Hlawatsch A., Beier T., Werner Vomweg T., Schadmand S., Schmidt M., Lehr H., Thelen M. (2002). Undected malignancies of the breast: Dynamic contrast-enhanced MR imaging at 1.0 T. Radiology, Vol. 224, pp. 881-888.