Unions et intersections de modèles pour l’analyse des systèmes d’information

Unions et intersections de modèles pour l’analyse des systèmes d’information

André Miralles Marianne Huchard  Jessie Carbonnel  Clémentine Nebut 

Tetis/IRSTEA, France

LIRMM, CNRS & Université de Montpellier, France

Corresponding Author Email: 
andre.miralles@teledetection.fr; marianne.huchard,jessie.carbonnel,clementine.nebut@lirmm.fr
28 February 2018
| Citation

In information systems, model integration consists in grouping into a single model all the business entities of several thematically connected models. In this paper, five operations are proposed to assist this integration: an alignment model which highlights the correspondences between the models; two union models and two intersection models built up with the common elements. The union and intersection models are calculated according to either a mechanism based on the semantics of business entities or a mechanism based on the binary description of these entities. Whatever the mechanism used, the union models are the smallest of the model unions and the intersection models, kernel of all models, are the greatest intersections of the models. These five operations are achieved with the help of formal concept analysis (FCA).


information system, UML, class model, class model matching, class model integration, class model union, class model intersection, formal concept analysis

1. Introduction
2. Cas d’étude
3. Eléments sur l’Analyse formelle de concepts
4. Union, intersection sémantiques vs union, intersection ensemblistes
5. Alignement de modèles
6. Union de modèles
7. Intersection de modèles
8. Ré-analyse de modèle et pistes d’amélioration de la méthodologie de ré-analyse
9. Travaux connexes
10. Conclusion

Alliance A. (2001). Manifesto for agile software development (vol. 2005) no June.

Altmanninger K., Seidl M., Wimmer M. (2009). A survey on model versioning approaches. International Journal of Web Information Systems, vol. 5, no 3, p. 271–304.

Amar B., Guédi A. O., Miralles A., Huchard M., Libourel T., Nebut C. (2012). Finding Semi-Automatically a Greatest Common Model Thanks to Formal Concept Analysis. In LNBIP(revised selected papers of ICEIS 2012), vol. 141, p. 72–91.

Aumueller D., Do H. H., Massmann S., Rahm E. (2005). Schema and ontology matching with COMA++. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, p. 906–908. Consulté sur http://doi.acm.org/10.1145/1066157.1066283

Barbut M., Monjardet B. (1970). Ordre et classification (volume 2). Hachette. Batini C., Lenzerini M., Navathe S. B. (1986). A comparative analysis of methodologies for database schema integration. ACM Computer Survey, vol. 18, p. 323–364.

Beck K. (2000). extreme programming explained - embrace change. Addison-Wesley.

Bendaoud R., Napoli A., Toussaint Y. (2008). Formal Concept Analysis: A unified framework for building and refining ontologies. In EKAW 2008, p. 156-171.

Carbonnel J., Huchard M., Miralles A., Nebut C. (2017). Feature model composition assisted by formal concept analysis. In ENASE 2017 - Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering, Porto, Portugal, April 28-29,

2017, p.27–37. Consulté sur https://doi.org/10.5220/0006276600270037

Cicchetti A., Ruscio D., Pierantonio A. (2008). Managing model conflicts in distributed development. In MoDELS 2008, p. 311–325.

Duchateau F., Bellahsene Z. (2016). YAM: A step forward for generating a dedicated schema matcher. Trans. Large-Scale Data- and Knowledge-Centered Systems, vol. 25, p. 150–185. Consulté sur https://doi.org/10.1007/978-3-662-49534-6_5

Fabro M. D. D., Valduriez P. (2007). Semi-automatic model integration using matching transformations and weaving models. In Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15, 2007, p. 963–970. Consulté sur http://doi.acm.org/10.1145/1244002.1244215

Falleri J.-R. (2009). Contributions à l’IDM : reconstruction et alignement de modèles de classes. Thèse de doctorat, Université Montpellier 2.

Falleri J.-R., Huchard M., Lafourcade M., Nebut C. (2008). Metamodel Matching for Automatic Model Transformation Generation. In MoDELS 2008, p. 326–340.

Formica A. (2006). Ontology-based concept similarity in Formal Concept Analysis. Information Sciences, vol. 176, p. 2624–2641.

Ganter B., Wille R. (1999). Formal concept analysis: Mathematical foundation. Springer-Verlag Berlin.

Godin R., Mili H. (1993). Building and maintaining analysis-level class hierarchies using Galois lattices. In OOPSLA, p. 394–410.

Hammoudi S., Lopes D. (2005). From mapping specification to model transformation in MDA: conceptualization and prototyping. In Web Services and Model-Driven Enterprise Information Services, Proceedings of the Joint Workshop on Web Services and Model-Driven Enterprise Information Services, WSMDEIS 2005, In conjunction with ICEIS 2005, Miami, USA, May 2005, p. 110–121.

Huchard M. (2015). Analyzing inheritance hierarchies through formal concept analysis: A 22-years walk in a landscape of conceptual structures. In MASPEGHI@ECOOP 2015, ACM Digital Library, p. 8–13.

Kalfoglou Y., Schorlemmer M. (2005). Ontology mapping: The state of the art. In Semantic interoperability and integration, Dagstuhl Seminar proceedings.

Kashyap V., Sheth A. P. (1996). Semantic and schematic similarities between database objects: A context-based approach. VLDB J., vol. 5, no 4, p. 276–304. Consulté sur https://doi.org/10.1007/s007780050029

Kessentini M., Ouni A., Langer P., Wimmer M., Bechikh S. (2014). Search-based metamodel matching with structural and syntactic measures. Journal of Systems and Software, vol. 97,p. 1–14. Consulté sur https://doi.org/10.1016/j.jss.2014.06.040

Kpodjedo S., Ricca F., Galinier P., Antoniol G., Guéhéneuc Y. (2013). Madmatch: Many-tomany approximate diagram matching for design comparison. IEEE Trans. Software Eng., vol. 39, no 8, p. 1090–1111. Consulté sur https://doi.org/10.1109/TSE.2013.9

Kruchten P. B. (1999). The rational unified process: An introduction (3rd éd.). Addison-Wesley.

Lafi L., Feki J., Hammoudi S. (2014). Metamodel matching techniques: Review, comparison and evaluation. IJISMD, vol. 5, no 2, p. 70–94. Consulté sur https://doi.org/10.4018/ijismd.2014040104

Lafi L., Feki J., Hammoudi S. (2016). Towards a hybrid semi-automatic technique for metamodel matching. In MODELSWARD 2016 - proceedings of the 4rd international conference on model-driven engineering and software development, rome, italy, 19-21 february, 2016., p. 421–426. Consulté sur http://ieeexplore.ieee.org/document/7954389

Melnik S., Garcia-Molina H., Rahm E. (2002). Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002, p.117–128. Consulté sur https://doi.org/10.1109/ICDE.2002.994702

Miralles A. (2016). Contribution à une conception rationnelle et malléable des systèmes d’information environnementaux. Habilitation á diriger les recherches. (in french)

Miralles A., Dolques X., Huchard M., Le Ber F., Libourel T., et. al. (2014). Exploration de la factorisation d’un modèle de classes sous contrôle des acteurs. In Actes du XXXIIème Congrès INFORSID, Lyon, France, 20-23 Mai 2014, p. 245–261.

Miralles A., Pinet F., Carluer N., Vernier F., Bimonte S., Lauvernet C. et al. (2011). EISPesticide: an information system for data and knowledge capitalization and analysis. In Euraqua-peer scientific conference, 26/10/2011 - 28/10/2011, p. 1. Montpellier, FRA.

Missikoff M., Scholl M. (1989). An Algorithm for Insertion into a Lattice: Application to Type Classification. In Proceedings of the 3rd Int. Conf. FODD 1989, p. 64–82.

Ngo D., Bellahsene Z. (2016). Overview of YAM++ - (not) yet another matcher for ontology alignment task. J. Web Sem., vol. 41, p. 30–49. Consulté sur https://doi.org/10.1016/j.websem.2016.09.002

Osman-Guédi A. (2013). Transformation automatisée de modèles de Systèmes d’Information. Thèse de doctorat, Université Montpellier 2.

Parent C., Spaccapietra S. (1998, May). Issues and approaches of database integration. Communication of the ACM, vol. 41, p. 166–178.

Rahm E., Bernstein P. A. (2001). A survey of approaches to automatic schema matching. The VLDB Journal, vol. 10, p. 334–350.

Roume C. (2004). Analyse et restructuration de hiérarchies de classes. Thèse de doctorat, Université Montpellier 2.

Royce W. W. (1970, août). Managing the development of large software systems. In Proceedings of IEEE WESCON, p. 1-9.

Rundensteiner E. A. (1992). A Class Classification Algorithm For Supporting Consistent Object Views. Rapport technique. University of Michigan.

Shvaiko P., Euzenat J. (2005). A Survey of Schema-Based Matching Approaches Journal on Data Semantics IV. In Journal on data semantics IV, vol. 3730, p. 146–171.

Shvaiko P., Euzenat J. (2013). Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng., vol. 25, no 1, p. 158–176. Consulté sur https://doi.org/10.1109/TKDE.2011.253

Snelting G., Tip F. (2000). Understanding class hierarchies using concept analysis. ACM Trans. Program. Lang. Syst., vol. 22, no 3, p. 540–582. Consulté sur http://doi.acm.org/10.1145/353926.353940

Stumme G., Maedche A. (2001). Ontology merging for federated ontologies on the semantic web. In Int. work. foundations of models for information integration (FMII), p. 413–418.

Tatsiopoulos C., Boutsinas B. (2009). Ontology mapping based on association rule mining. In ICEIS 2009, p. 33-40.

Voigt K., Heinze T. (2010). Metamodel matching based on planar graph edit distance. In ICMT 2010, p. 245–259.

Xing Z., Stroulia E. (2005). Umldiff: An algorithm for object-oriented design differencing. In Proceedings of the 20th ieee/acm international conference on automated software engineering, p. 54–65. New York, NY, USA, ACM. Consulté sur http://doi.acm.org/10.1145/1101908.1101919